
 - 1 -

PROGRAMS
FOR THE

COSMAC ELF
INTERPRETERS

PAUL C. MOEWS

 - 2 -

PROGRAMS FOR THE COSMAC ELF INTERPRETERS
Paul C. Moews

List of Sections

1. Introduction ………………………………………………………………………………………….... 3
2. A Demonstration Interpreter …………………………………………………………………………... 4
3. The CHIP-8 Language …………………………………………………………………………….…... 9
4. Hardware Differences between 1802 Computers ……………………………………………………... 13
5. A Complete ELF CHIP-8 Interpreter ……………………………………………………………….… 13
6. Extending the CHIP-8 Instruction Set ………………………………………………………………… 22
7. Appendix ……………………………………………………………………………………………… 28

List of Programs

Machine Code

1. Demonstration Interpreter …………………………………………………………………………….. 8
2. Complete CHIP-8 Interpreter …………………………………………………………………………. 14
3. Additional Skip Instructions …………………………………………………………………………... 22
4. Multiply, Divide and 16 Bit Display Instructions …………………………………………………….. 23
5. Six Bit ASCII Symbols ……………………………………………………………………………….. 25

Interpretive Code

1. Addition (Demonstration Interpreter) …………………………………………………………………. 5
2. Subroutine Use (Demonstration Interpreter) ………………………………………………………….. 5
3. Addition Problems (Demonstration Interpreter) ……………………………………………………… 6
4. Addition Problems (Full Interpreter) ………………………………………………………………….. 10
5. Display ASCII Character (Full Interpreter) …………………………………………………………… 26

Copyright © 1979 by Paul C. Moews
All rights reserved

Published March, 1979 by Paul C. Moews
Printed by Parousia Press, Storrs, Connecticut

 - 3 -

Introduction

This booklet’s purpose is to explain the construction and operation of an interpreter for the COSMAC
1802 “ELF”. It assumes that the reader has some knowledge of the 1802 instruction set and is able to write
simple machine language programs. Mnemonics are not provided because most ELF owners do not have
access to assemblers and must work directly in machine language. Instead, programs are explained in a
documented, step-by-step fashion, that it is hoped will make the concepts involved easy to follow.

The interpretive language described is “CHIP-8”, the language used by RCA Corporation in its
“COSMAC VIP” computer. CHIP-8 is a simple language consisting of about 30 instructions. RCA’s
interpreter is elegant and well thought out; once understood it is easily changed and modified.

This booklet contains five sections; in the first section a simple demonstration interpreter is introduced.
This demonstration interpreter runs in the basic 1/4 “ELF” and its instructions are a subset of the full CHIP-
8 instruction set. While simple, the demonstration interpreter employs methods similar to those in the full
interpreter.

Further sections discuss the full CHIP-8 instruction set, hardware differences between the “VIP” and
the “ELF”, and provide a listing of a complete ELF interpreter together with suggestions for implementing
it on various machines. The final section discusses the extension of the CHIP-8 instruction set. Examples
are provided for multiply and divide instructions together with an instruction which displays characters for
the 64 six bit ASCII symbols.

I should like to thank RCA Corporation for permission to write about CHIP-8 and to modify it for the
ELF. However RCA is not responsible for any of the material in this booklet. The programs described here
have been thoroughly tested on a number of versions of the COSMAC “ELF” as described in Popular
Electronics articles and are believed to be reliable but there is, of course, still the possibility that they
contain unexpected errors. This kind of interpreter is rather hardware dependent and changes in
input/output lines or in the use of flag lines will cause failures. An attempt was made to provide sufficient
documentation so that the user can make the changes necessary to implement CHIP-8 on a variety of
machines.

 - 4 -

A Demonstration Interpreter

The surprising power of computers is due to
the development of languages which organize
programming into different levels of complexity.
Perhaps the simplest way to organize
programming with a language is to use an
interpreter. One can consider an interpreter to be
a program that converts the basic instruction set
to a new language, a set of instructions that
better suits the programmer. Alternately an
interpreter can be thought of as a program with a
control section and a number of subroutines, the
new language now instructs the interpreter as to
which subroutines to call and in which order.
The subroutines perform "tasks" which are more
complicated than those performed by a single
machine code operation. The ubiquitous basic
interpreter is a good example.

RCA's CHIP-8 language is an interpretive
one and it converts the 94 machine language
instructions of the 1802 microprocessor to a new
set of about 30 more powerful and convenient
instructions. Each type of statement in the new
language is implemented by a machine code
subroutine which carries out the desired
operation. It differs from a basic interpreter in
that most of the operations carried out by the
subroutines are small ones, consisting of only a
few machine code instructions, and the language
is therefore a simple one without many of the
features of basic. However quite powerful
programs can be written with a few hundred
CHIP-8 instructions.

This section introduces a version of CHIP-8
for the 1/4K Elf. Ten of the instructions are a
subset of the full CHIP-8 set and are identical to
those in CHIP-8. Two additional instructions,
read a byte from the keyboard and display a byte
on the hex display, have no exact counterparts in
the CHIP-8 set.

CHIP-8 instructions consist of four hex
digits. The first hex digit determines the type of
instruction; there are therefore 16 basic kinds of
CHIP-8 instructions. The next 3 hex digits are
used in several different ways. The can be used
to specify a memory location, and as there are 3
hex digits available, any memory location from
000 to FFF can be specified. In the
demonstration interpreter only the two least
significant hex digits are needed for this purpose
because it is necessary to address only a single
page of memory.

A basic feature of CHIP-8 is that it provides
16 one byte variables, designated V0 through
VF. Thus a single hex digit can be used to

specify one of these variables. In many pt the
CHIP-8 instructions the second most significant
hex digit is used for this purpose, leaving the last
two hex digits available for other uses. In
arithmetic operations the two variables to be
added, etc. are specified by the second and third
hex digit leaving the last hex digit to designate
the type of arithmetic operation to carry out.

Before beginning a discussion of how the
interpreter works, it is necessary to have an
understanding of the language and its use. The
instructions available are shown in Table 1.

Table 1

Demonstration Interpreter Instructions

00MM do a machine code subroutine at
location MM (The machine code
subroutine must end with D4)

10MM go to MM; control is transferred to
location MM in the interpretive code

20MM do an interpreter subroutine at location
MM (The interpreter subroutines must
end with 009E)

4XKK skip if VX≠KK; the next interpreter
instruction is skipped over if VX does
not equal KK

6XKK set VX=KK; variable X is made equal
to KK

8XY0 set VX=VY; variable X is made equal
to variable Y

8XY1 set VX=VY or VY; variable X is made
equal to the result of VX logically ored
against VY (Note that VF is changed)

8XY2 set VX=VX and VY; variable X is
made equal to the result of VX logically
anded against VY (Note that VF is
changed)

8XY3 set VX=VX xor VY; variable X is made
equal to the result of VX logically xored
against VY (note that VF is changed)

8XY4 set VX=VX+VY; variable X is made
equal to the sum of VX and VY (Note
that VF becomes 00 if the sum is less
than or equal to FF and 01 if the sum is
greater than FF)

8XY5 set VX=VX-VY; variable VX is made
equal to the difference between VX and
VY (Note that VF becomes 00 if VX is
less than VY and 01 if VX is greater
than or equal to VY)

8XY6 set VX equal to VY shifted right 1 bit
position, (Note bit 0 is shifted into VF)

8XY7 set VX=VY-VX; variable VX is made
equal to the difference between VY and
VX (Note that VF becomes 00 if the

 - 5 -

sum is less than or equal to FF and 01 if
the sum is greater than FF)

8XYE set VX equal to VY shifted left 1 bit
position (Note bit 7 is shifted into VF)

DXKK display VX on the hex display, KK
indicates the length of a pause for
display

FX00 set VX equal to the switch byte; waits
for the input button to be pushed and
released

An easy way to see how these instructions
are used is to illustrate them with a simple
program. The interpreter is listed at the end of
the chapter and can be used to run these sample
programs.

To start let's look at the following program. It
reads 2 switch bytes, displays them, adds them,
and displays the result. If overflow occurs, that is
also displayed. The program uses only 10
interpreter instructions (The first instruction
3071 is actually machine code and transfers
control on entry to the interpreter; It is not part of
the interpretive code.) The interpreter has a
program counter for interpretive code (R(5))
which is set on entry to the address of the first
instruction (M(0002)). The first interpretive
language instruction is 63EE which sets variable
number 3 equal to EE.

Interpretive Addition Program

Add. Code Notes
00 3071 entry to interpreter
02 63EE set V3 equal to EE
04 F400 set V4 equal to switch byte,

waits for in on, off
06 D4FF display V4 on hex display

for about 1.8 seconds
08 F500 set V5 equal to switch byte
0A D5FF display V5 on hex display
0C 8454 set V4 equal to V4 + V5
0E D4FF display V4, now the sum of

V4 + V5
10 4F01 skip next instruction if VF ≠

01, remember VF will be set
to 01 by the 8454
instruction if overflow
occurs

12 D3FF display V3 (V3 was set
equal to EE) this instruction
is skipped if VF is anything
but 01

14 1004 go back to instruction 04 to
wait for next number

The above program illustrates most of the
demonstration interpreter instructions; an

important exception is the interpreter subroutine
call. Unlike the SEP register technique used in
simple machine code programs, interpreter
subroutines do not have to return to the main
program but can be called from other
subroutines. A stack is employed to store the
return address when a subroutine call is made
and successive calls to subroutines, without
returns, push the stack further down. In the
demonstration interpreter the stack pointer, R(2),
points to the last location used and is pushed
down one before a new byte is added to the
stack. Each time a return from a subroutine
occurs the stack pointer is incremented by one.

The next program is a simple illustration of
the use of an interpreter subroutine. A switch
byte is entered and displayed. It is then counted
down by three's until underflow occurs. A
subroutine is used to implement the counting
down by three.

Program to Illustrate Subroutine use

Add. Code Notes
00 3071 entry to interpreter
02 F500 set V5 equal to switch byte,

waits for in on, off
04 D5FF display V5 on hex display

for about 1.8 seconds
06 200A call interpreter subroutine at

location 0A
08 1002 on return from subroutine

go to location 02 to read
another switch byte

- - begin interpretive
subroutine

0A 6603 set V6 equal to 03
0C 8565 set V5 equal to V5 - V6
0E D540 display V5 for ca 0.4

seconds
10 4F01 skip next instruction if

underflow occurs during the
subtraction, VF equals 00
on underflow

12 100C transfer to location 0C to
subtract three more

14 009E return from subroutine

In the above program, the call to the
subroutine uses one stack position to store the
return address. When the interpreter is entered
the stack pointer is set to location 71. On calling
the subroutine it is decremented by one, to
location 70, and 08, the location the interpreter
should execute on return from subroutine, is
stored there. If we examine location 70 after
running this program 08 will be found there.

 - 6 -

Two additional stack locations, 6E and 6F are
used by 8565 instruction, these locations become
F5 and D3 respectively. An explanation of why
this occurs is given in the demonstration
interpreter listing.

The interpreter also includes an instruction,
00MM, which executes a machine code
subroutine at address MM. This is easily
accomplished; the control section of the
interpreter treats the machine code subroutine as
if it were one of the subroutines written to
execute CHIP-8 instruction. All the subroutines
which execute CHIP-8 instructions end with a
D4 byte.

The following program poses simple addition
problems and illustrates most of the
demonstration interpreter instructions. It contains
a machine language subroutine which generates
two random numbers when the in button is
pushed. On entry, the program displays AA and
the Q light comes on. When the input button is
pressed a simple addition problem (base 10) is
presented; for example 17AD (for and) 32E0 (for
equals) may be displayed. If 00 is entered the
problem is shown again, if the correct answer is
entered it is displayed followed by AA. However
if an incorrect answer is entered EE is shown
followed by the correct answer. The program
requires 36 interpreter instructions and a
machine language subroutine of 25 bytes. An
interpreter subroutine is used to generate two
random numbers in VD and VE. The displayed
numbers are all less than 99 (base 10) to
accommodate the hex display and the simple hex
to decimal conversion routine which fails for
numbers greater or equal to 100 (base 10).

Program for Addition Problems

Add. Code Notes
00 3071 entry to interpreter
02 60E0 set V0 equal to E0
04 61EE set V1 equal to EE
06 62AD set V2 equal to AD
08 63AA set V3 equal to AA
0A D300 display V3 (AA) on the

display but no delay for
display

0C 004A call machine language
subroutine which
generates random
numbers in VD and VE
when in is pushed

0E 8BE0 set VB equal to VE as
preparation for summing
the two random numbers

10 8BD4 set VB equal to VD +
VE, sum of the two
random numbers

12 203A call the interpreter
subroutine which
converts from hex to
decimal, answer is
returned in VA and VB
is changed

14 8CA0 save answer on return
from subroutine by
setting VC equal to VA

16 8BE0 set VB equal to VE, one
of the random numbers

18 203A call subroutine to make
VA the decimal
equivalent of VB

1A DAFF display VA, first random
number (base 10)

1C D2FF display V2 (AD)
1E 8BD0 set VB equal to VE the

other random number
20 203A call subroutine to make

VA the decimal
equivalent of VB

22 DAFF display VA, second
random number

24 D0FF display V0 (E0)
26 F600 make V6 the entered

byte
28 4600 skip the next instruction

if V6 is equal to 00
2A 1016 here only if V6 is 00,

back to 16 to repeat
display

2C D6FF display V6, the entered
byte

2E 86C5 set V6 equal to V6 - VC,
VC is the correct answer
(base 10)

30 4600 skip next instruction
unless V6 equals 00, i.e.
skip on wrong answer

32 100A transfer to 0A to show
AA if answer is correct

34 D1FF display V1 (EE)
36 DCFF display VC, correct

answer
38 100C transfer to 0C to begin

next problem
- - end of main, begin hex to

decimal conversion
subroutine, subroutine
adds 06 to VB for every
time 0A occurs,
argument is passed in

 - 7 -

VB and returned in VA
3A 8AB0 set VA equal to VB
3C 6906 set V9 equal to 06
3E 680A set V8 equal to 0A
40 8B85 set VB equal to VB - V8,

i.e. subtract 0A from VB
42 4F00 skip next instruction if

VF equals 00, i.e. skip
unless underflow

44 009E return from subroutine
on underflow

46 8A94 set VA equal to VA +
V9, i.e. add 06 to VA

48 1040 transfer to location 40 to
subtract 0A from VB,
this is the end of the
subroutine

- - start of machine
language subroutine,
random numbers from 1
through 50 (base 10) are
generated in VD and VE,
R(6) is used to point to
VD and VE, see
interpreter listing for a
better understanding of
how this routine works

4A 7B entry point, turn Q on
4B E6 make R(6) the X register
4C F8 FE A6 load the address of VE to

R(6)
4F F8 33 load 51 (base 10) to D
51 FF 01 subtract 01 from D
53 32 4F transfer to 4F if D is zero
55 3F 51 transfer to 51 unless in

pushed
57 73 here when in pushed,

store number in VE point
R(6) to VD

58 F8 32 load 50 (base 10) to D
5A FF 01 subtract 01 from D
5C 32 58 transfer to 58 id D is zero
5E 37 5A transfer to 5A unless in

released
60 56 store number in VD
61 7A D4 turn Q off and return,

end of program

The above program illustrates one of the
weaknesses of CHIP-8. There is no way to pass
arguments to interpreter subroutines except
through the variables and we must execute a
number of variable transfer instructions to use
the hex to decimal interpreter subroutine. This
weakness is partly overcome in the full
interpreter by the inclusion of instructions which

transfer the variables to and from memory. The
full interpreter also includes an instruction which
generates random numbers and a hex to decimal
conversion routine. In the next section this
program has been rewritten for the full
interpreter.

Now let’s look at the listing for the
demonstration interpreter. It uses the 16
locations F0 through FF to store the 16 variables.
The interpreter examines each instruction in turn
and carries out the desired operation by calling
the correct subroutine. It uses the following
registers:

Demonstration Interpreter Register Use

R(2) stack pointer
R(3) set to address of machine code

subroutine that carries out instruction,
i.e. subroutine program counter

R(4) program counter for control section of
interpreter

R(5) program counter for interpretive code
R(6) VX pointer, points to one of 16

variables
R(7) VY pointer, points to one of 16

variables
R(C) used to point to a table of addresses

The interpreter is designed for use on a single
page of memory and will work in the basic 1/4K
Elf as it stands. For expanded systems R(2),
R(3), R(4), R(5), R(6), R(7) and R(C) have to
have their high order bytes set to the page the
interpreter resides on. Perhaps the simplest way
to do this initialization for an expanded system is
to change the entry point of the interpreter from
71 to 68 and add the following code from
locations 68 through 73:

Add. Code Notes
68 F8 00 load page number

to D, here 00 but
interpreter can be
on any page

6A B2 B3 B4 initialize registers
6D B5 B6 B7 BC initialize register
71 F8 68 A2 establish top of

stack at M(68)
instead of at M(71)

Note that the stack pointer is now initialized at
location 68 instead of at location 71. Alternately
one can place the interpreter on a higher page in
memory, do the initialization of the registers on
page 00 and then transfer control to the
interpreter. If this method is used the interpretive
code can start at location 00 and R(5).0, the

 - 8 -

address of the first interpreter instruction, can be
set to 00.

Demonstration Interpreter Listing

Add. Code Notes
71 F8 71 A2 establish stack pointer
74 F8 7A A4 R(4) will be program

counter for control
section of interpreter

77 F8 02 A5 R(5) is program counter
for interpretive code,
first instruction is at
M(02)

7A D4 establish program
counter for control
section

7B E2 make R(2) the X
register, this is the entry
point for return to
control section after
completing a subroutine
call

7C 45 AF load first half of
instruction and save it
in R(F).0

7E F6 F6 F6 F6 shift right to get most
significant digit most
significant digit
determines type of
instruction

82 32 98 if D is zero (type 0
instruction) we have
machine code
subroutine call, transfer
to location 98

84 F9 A0 else or against A0 to get
address from table of
subroutine locations
(see locations A1 to
AF)

86 AC save address in R(C).0
87 8F bring back instruction
88 F9 F0 or against F0 to get VX

address
8A A6 establish R(6) as VX

pointer
8B 05 load second half of

instruction, note that
R(5) is left pointing to
second half of
instruction

8C F6 F6 F6 F6 shift right to get VY
pointer

90 F9 F0 or against F0 to get VY
address

92 A7 establish R(7) as VY
pointer

93 0C A3 pick up subroutine
address from table and
point R(3) to subroutine

95 D3 call subroutine to do
instruction

96 30 7B on return from
subroutine go to 7B for
next instruction

98 45 30 94 here for machine code
subroutine, load address
to D and go to 94 to
establish R(3)

- - begin subroutine for
6XKK instruction

9B 45 56 load KK to D, store in
VX

9D D4 return to control section
- - 9E through A0 is a

machine code
subroutine that restores
R(5) on return from
interpreter subroutine

9E 42 load return address
from stack

9F A5 D4 restore R(5) and return
- - the next 15 bytes are

the subroutine locations
A1 B5 B0 E5 B8
A5 E5 9B E5 C0
A9 E5 E5 E5 E5
AD E7 E5 DD

i.e. go to B5 for 10MM
instructions, go to B0
for 20MM instructions,
etc. illegal instructions
go to E5 where they are
ignored

- - subroutine for 20MM
instructions

B0 15 85 load return address to D
B2 22 52 save on stack, push

stack down first
B4 25 restore R(5) so that it

points to MM
- - rest of this subroutine is

shared with 10MM
instructions

B5 45 A5 load MM change R(5)
to point to new address

B7 D4 return
- - begin subroutine for

4XKK instruction
B8 45 load KK to D
B9 E6 make R(6) the X

register, the VX pointer
BA F3 x’or VX against KK

 - 9 -

BB 32 BF return immediately if D
equals 0, i.e. if VX
equals KK

BD 15 15 else increment
instruction program
counter twice

BF D4 return
- - here begin the 8XYN

instructions
C0 45 load YN to D
C1 FA 0F and off N to get 0N in

D
C3 3A C8 go to C8 unless N is

zero
C5 07 56 load VY, write to VX
C7 D4 return
- - here on other 8XYN

instructions, makes up
FN D3 on stack,
transfers control to
stack and obeys the two
instructions, uses R(2)
as program counter

C8 AF save 0N
C9 22 push stack down
CA F8 D3 73 load D3 to D, write to

stack
CD 8F F9 F0 load 0N, or against F0

to get F1, F2, F3, F4,
F5, F6, F7, or FE

D0 52 write to stack
D1 E6 make VX pointer the X

register
D2 07 load VY to D
D3 D2 go to stack to obey FN

D3 instructions
D4 56 on return save result as

VX
D5 F8 FF A6 point R(6) to VF
D8 F8 00 clear D
DA 7E 56 shift DF into D and

save as VF
DC D4 return
- - begin FX00 subroutine
DD 7B Q on to indicate waiting

for byte
DE 3F DE wait for in on
E0 37 E0 wait for in off
E2 E6 make VX pointer the X

register
E3 6C switch byte to VX
E4 7A turn Q off
E5 45 D4 advance instruction

counter, return – also
used for illegal
instructions

- - begin DXKK
subroutine

E7 E6 make VX pointer the X
register

E8 64 display VX
E9 45 BF load KK to R(F).1
EB 2F 9F decrement R(F), load

R(F).1
ED 3A EB go to EB unless D is

zero, delay loop
EF D4 return – end of

interpreter
F0-FF - locations where the 16

interpreter variables are
stored

The Chip-8 Language

This section contains a brief discussion of the
CHIP-8 language and a list of the available
instructions. Further information about RCA’s
VIP machine and about CHIP-8 can be found in
two articles by Joseph Weisbecker (“COSMAC
VIP, the RCA Fun Machine”, in the August,
1977 Byte magazine p. 30, and “An Easy
Programming System”, in the December, 1978
Byte magazine p.108) and in RCA’s literature.
The full CHIP-8 instruction set is listed in the
table at the end of this chapter.

Many of the basic features of the CHIP-8
language are explained and illustrated in section
2 and the demonstration interpreter contains ten
instructions which are identical to those in the
full CHIP-8 set. The complete language is
designed for use with low resolution graphics
and the display subroutine is the longest and
most complex of the subroutines in the
interpreter. A number of TV games have been
written with CHIP-8 and it is well suited for this
purpose. The display instruction is used in
conjunction with a memory pointer and the
CHIP-8 variables and has the form DXYN. The
values of VX and VY indicate where on the
video display to show information, and the value
of N indicates how many bytes to display. A
memory pointer, called I, gives the starting
address of the information to be displayed and
must be set by other instructions. Positions in the
display field are determined by a rectangular
coordinate system with the origin in the upper
left corner; 64 horizontal positions, designated
by VX and 32 vertical positions designated by
VY, are available. The bytes to be displayed are
exclusively ored against the display field; an
important feature for TV games. Portions of
memory bytes which extend beyond the display

 - 10 -

field on the right or at the bottom are truncated,
there is no wrap around.

Another important feature of the language is
the 16 one byte variables, V0 through VF, which
are held in random access memory. Two of these
variables V0 and VF are used for special
purposes. V0 is used in a kind of computed go
statement, the BMMM instruction. Control is
transferred to location MMM to which has been
added the value of V0. As in the demonstration
interpreter, VF is used to indicate overflow in
arithmetic operations. It is also used to indicate
when a display instruction attempts to show a
position which is already being displayed. As the
display instruction exclusively or’s the data to be
displayed against the display field, such an
attempt turns off the displayed position. VF is set
to 01 to indicate this occurrence. This serves as a
simple way to determine if a missile has struck a
target in a TV game.

A third important feature of CHIP-8, already
mentioned in the discussion of the display
routine, is the memory pointer, I. The memory
pointer can be set both directly and indirectly;
besides its use as a display pointer, it also serves
as a pointer for transferring variables to and from
memory.

The full CHIP-8 instruction set has six skip
instructions all of which follow the principle of
the skip instruction included in the
demonstration interpreter. That is, the next
interpreter instruction is skipped over if on
testing a condition it is found to be true.

The instructions which have 8 as the first
hexadecimal digit perform arithmetic and logic
operations and are all included in the
demonstration interpreter. Note again that VF is
used to indicate overflow and that the value of
VF is changed by 8XY1, 8XY2, 8XY3, 8XY4,
8XY5, 8XY6, 8XY7, and 8XYE instructions.

A number of instructions which are not
included in the demonstration interpreter are the
“F” instructions. Several of these are used in
conjunction with the memory pointer. For
example the FX29 instruction points I at a 5 byte
memory pattern which corresponds to the least
significant hex digit of VX. If V7 were 38 and
F729 instruction were executed I would point to
the first byte of the series F0, 90, F0, 90, F0 (a
pattern for the symbol “8”) and DXY5
instruction would show an “8” on the display.
The FX33 instruction is a binary to decimal
conversion routine. The value of VX is
converted to a 3 digit decimal number with the
hundreds digit stored at location I, the tens digit
at location I + 1, and the units digit at location I

+ 2. The FX55 and FX56 instructions use the
memory pointer to transfer values from memory
to the variables , respectively.

Other “F” instructions include a settable tone
generator (FX18) (see the section on Hardware
Differences), an instruction to set a timer
(FX15), an instruction to read the timer (FX07),
and an instruction to read the keyboard (FX0A).
An additional “F” instruction has been added for
the Elf; FX75, which displays the value of VX
on the hex display.

Other useful instructions which are not
present in the demonstration interpreter include a
random number generator (CXKK where KK is
anded against a random byte before being
transferred to VX), and an instruction which
adds a byte to one of the variables, 7XKK. Two
of the CHIP-8 instructions 00E0 (erase display)
and 0DEE (return from a CHIP-8 subroutine) are
implemented as machine code subroutines
resident in the interpreter itself. They are
therefore dependant upon the page where CHIP-
8 is located and will have to be changed if CHIP-
8 is relocated. This also is the reason that the
return from a subroutine is 009E in the
demonstration interpreter and 00EE in the full
CHIP-8 interpreter.

To illustrate the use of the full instruction set,
let’s rewrite one of the programs that used the
demonstration interpreter, the one involving
addition problems. The following program
constructs simple addition problems using two
randomly chosen numbers between 0 and 127.
On entry to the program a problem is presented,
e.g. 076 + 093 = ?. An answer is entered through
the keyboard one digit at a time (i.e. 1, 6, 3) and
when the last digit is entered 163 is displayed. A
C flows the entered number if it is correct and an
E if it is incorrect. In the case of an incorrect
answer the correct answer is also shown.
Another problem is given when any key is
entered. The program consists of 67 CHIP-8
instructions and also uses 32 bytes for constants
and work space.

Program for Addition Problems

Add. Code Notes
0200 00E0 erase display
- - first set up problems and answer
0202 CD7F VD equals random number
0204 CE7F VE equals random number
0206 8CD0 VC = VD
0208 8CE4 VC = VD + VE (the answer)
- - next convert to decimal and

display the problem
020A A2A2 point I to work space

 - 11 -

020C 6A00 set VA = 00, display pointer
020E 6B00 set VB = 00, display pointer
0210 FD33 M(I) equals 3 digit decimal

equivalent of VD
0212 F265 V0, V1, V2 equals M(I)
0214 2276 call CHIP-8 subroutine (displays

3 digit number in V0, V1, and
V2)

0216 A288 point I to + pattern
0218 7A07 VA = VA + 07, display pointer
021A DAB

5
display + pattern

021C A2A2 point I to work space
021E 7A08 VA = VA + 08, display pointer
0220 FE33 M(I) equals 3 digit decimal

equivalent of VE
0222 F265 V0, V1, V2 equals M(I)
0224 2276 call subroutine to display VE
0226 A28E point I to = pattern
0228 7A07 VA = VA + 07, display pointer
022A DAB

4
display = pattern

022C A292 point I to ? pattern
022E 6A18 set VA = 18, display pointer
0230 6B08 set VB = 08, display pointer
0232 DAB

F
display ? pattern

- - now read in possible answer
0234 F00A V0 = least significant digit of

switch byte
0236 F10A V1 = switch byte (LSD)
0238 F20A V2 = switch byte (LSD)
023A DAB

F
display ? pattern (erases it)

023C 6A15 set VA = 15, display pointer
023E 2276 call subroutine to display entered

answer
- - now compute answers, right to

025c, wrong to 0262
0240 A2A5 point I to work space
0242 F255 V0, V1, V2 – correct answer
0244 A2A2 V3, V4, V5 – entered answer
0246 FC33 V3 = V3 – V0
0248 F565 skip to 0262, error
024A 8305 V4 = V4 – V1
024C 3300 skip if V3 = 00
024E 1262 go to 0262, error
0250 8415 V4 = V4 – V1
0252 3400 skip if V4 = 00
0254 1262 go to 0262, error
0256 8525 V5 = V5 – V2
0258 3500 skip if V5 = 00
025A 1262 go to 0262, error
- - here if answer correct
025C 660C set V6 = 0C
025E F618 set tone duration (reward)

0260 126A go to 026A
- - here if answer wrong
0262 6A15 set VA = 15, display pointer
0264 6B10 set VB = 10, display pointer
0266 2276 call subroutine to display correct

answer
0268 660E V6 = 0E
026A 6A26 VA = 26, display pointer
026C 6B08 VB = 08, display pointer
026E F629 point I to C or E pattern
0270 DAB

5
display C or E

0272 F00A wait for any input
0274 1200 to 0200 for next problem
- - subroutine to display 3 digit

number held in V0, V1, V2
0276 F029 point I to pattern for V0
0278 DAB

5
display it

027A 7A05 VA = VA + 05, display pointer
027C F129 point I to pattern for V1
027E DAB

5
display it

0280 7A05 VA = VA + 05, display pointer
0282 F229 point I to pattern for V1
0284 DAB

5
display it

0286 00EE return from subroutine
- - patterns and work space
0288 2020 pattern for + sign
028A F820
028C 2000
028E 00FF pattern for ? sign
0290 00FF
0292 FFFF
0294 0303
0296 03FF
0298 FFC0
029A C0C0
029C C0C0
029E 00C0
02A0 C000
02A2 - work space
02A4 -
02A6 -

Table 2

Full Interpreter Instructions

0MMM do a machine code subroutine at
location 0MMM (The machine
code subroutine must end with D4)

1MMM go to 0MMM; control is transferred
to location 0MMM in the
interpretive code

 - 12 -

2MMM do an interpreter subroutine at
location 0MMM (the interpreter
subroutine must end with 00EE)

3XKK skip if VX = KK; the next
interpreter instruction is skipped
over if VX equals KK

4XKK skip if VX ≠ KK; the next
interpreter instruction is skipped
over if VX does not equal KK

5XY0 skip if VX = VY; the next
interpreter instruction is skipped
over if VX equals VY (see 9XY0)

6XKK set VX = KK; variable X is made
equal to KK

7XKK set VX = VX + KK; add KK to
variable X

8XY0 set VX = VY; variable X is made
equal to variable Y

8XY1 set VX = VX or VY; variable X is
made equal to the result of VX
logically or'ed against VY (Note
that VF is changed)

8XY2 set VX = VX and VY; variable X is
made equal to the result of VX
logically anded against VY (Note
that VF is changed)

8XY3 set VX = VX xor VY; variable X is
made equal to the result of VX
logically xor'ed against VY (Note
that VF is changed)

8XY4 set VX = VX + VY; variable X is
made equal to the sum of VX and
VY (Note that VF becomes 00 if
the sum is less than or equal to FF
and 01 if the sum is grater than FF)

8XY5 set VX = VX – VY; variable X is
made equal to the difference
between VX and VY (Note that VF
becomes 00 if VX is less than VY
and 01 if VX is greater than or
equal to VY)

8XY6 set VX = VY shifted right 1 bit
position (Note bit 0 is shifted into
VF)

8XY7 set VX = VY - VX; variable X is
made equal to the difference
between VY and VX (Note that VF
becomes 00 if VY is less than VX
and 01 if VY is greater than or
equal to VX)

8XYE set VX = VY shifted left 1 bit
position (Note bit 0 is shifted into
VF)

9XY0 skip if VX ≠ VY; the next
interpreter instruction is skipped

over if VX does not equal VY (see
5XY0)

AMMM point I at 0MMM; the memory
pointer is set to 0MMM

BMMM go to 0MMM + V0, the value of
V0 is added to 0MMM and control
is transferred to the resulting
location

CXKK set VX to a random byte; random
byte is anded against KK first

DXYN display N byte pattern at
coordinates VX, VY; I (memory
pointer) gives starting locations to
be displayed. The displayed
locations are exclusively ored
against display field. VF becomes
01 if some of the display field is
already set, 00 if it is not.

EX9E skip if VX = hex key; skip next
instruction if the least significant
digit of VX equals the least
significant digit of the keyboard.

EXA1 skip if VX ≠ hex key; skip next
instruction if the least significant
digit of VX does nor equal the least
significant digit of the keyboard

FX07 set VX to the value of the timer;
timer is counted down in interrupt
routine

FX0A set VX = hex key; sets VX equal to
the least significant digit of the
keyboard, waits for in on, off

FX15 set timer to VX; timer is counted
down in interrupt routine so 01 is
ca. 1/60th second

FX18 set tone duration to VX; turns Q on
for duration specified by VX, 01 is
ca. 1/60th second

FX1E set I to I + VX; add the value of
VX to the memory pointer

FX29 point I to pattern for least
significant digit of VX

FX33 convert VX to decimal; 3 decimal
digits are stored at M(I), M(I + 1),
and M(I + 2), I does not change

FX55 save V0 through VX in memory at
locations specified by I, V0 at M(I),
V1 at M(I+1), etc, I becomes I + X
+ 1

FX65 transfer memory locations specified
by I to variables V0 through VX,
V0 becomes M(I), V(1) becomes
M(I + 1), etc, I becomes I + X + 1

FX75 display the value of VX on the hex
display

 - 13 -

00E0 erase the display (actually a
machine language subroutine
resident in the interpreter)

Hardware Differences between 1802 Computers

The most important difference between the
various versions of the CCOSMAC ELF and the
COSMAC VIP is the keyboard. The COSMAC
VIP has a hex keyboard; however it is not
connected to an input port,. Instead the least
significant 4 bits of a bus output byte (Out 2, 62)
are decoded and the 16 output lines connected to
the corresponding hex keys. Each key is
connected to one of the flag lines (EF3). To
determine which key is depressed requires a
software routine which scans the keyboard.
Scanning is done by repeatedly outputting the 16
possible least significant hex digits and
examining the flag line to see which digits cause
it to be pulled low. Debouncing is also carried
out within the software routines; there is an
approximately 1/15 second software delay to
debounce both opening and closing of a
keyboard switch.

COSMAC ELF computers on the other hand
are variable in design and have a variety of ways
to input information from keyboards or switches.
Indeed the September, 1976 issue of Popular
Electronics describes a way to connect a scanned
hex keyboard, much like that contained in the
VIP, to the ELF. However most of the
commercially available ELFs (e.g. Super Elf and
Elf-2) have latched hex keyboards with roll-over.
The latches are connected to an input port and
one can examine the contents of these latches at
any time under software control. A hardware
debounced button (the in button) can be used as a
device to indicate to a software routine that we
wish the switch latches read. An additional
feature of the Elf is the ability to carry out direct
memory access input from the keyboard by
depressing the in button when the computer is in
the load mode. This feature is not required by the
VIP which has an operating system in ROM.

These different methods in inputting
information from the keyboard have different
advantages and disadvantages, neither is really
totally satisfactory. The VIP’s keyboard has one
significant advantage. All of the keys are
connected directly to a flag line and it is possible
to tell, with software, when a key is being
depressed and if so which one. A quick response
to keyboard entry is therefore possible and this
property is particularly desirable for TV games.
It also makes possible an operating system which
enters bytes directly from the keyboard to

memory without the necessity of pushing an in
button. These features are more difficult with a
roll-over latched keyboard like that found in
many ELFs. Entered bytes can only be read from
latches and there is no way, with software, to
determine when a single key is repeatedly
entered; that is we could never determine if B, B,
B, B was entered because the contents of the
latches would never change. This difficulty
could, of course, be overcome with some simple
hardware changes to the ELF.

The advantage of the ELF keyboard is that
the contents of the keyboard latches can be
transferred directly to memory by instituting a
direct memory access cycle. This, in fact, is what
makes the ELF a viable machine without read
only memory. However the ELF would be easier
to use if the contents of the keyboard latches
were displayed and if a signal were provided
which made it unnecessary to push the in button.

Another hardware difference is in the
treatment of the Q line. In the VIP the Q line is
attached to a simple oscillator, and this in turn
can be connected to a speaker. Hence in the VIP
when the Q line is turned on, a tine is heard in
the loudspeaker. This feature can be added to an
ELF without much difficulty. It should perhaps
be mentioned that the VIP has room on board for
one input and one output port, the output uses
out-3 (63), and the input port uses in-3 (6B).

Rather than attempt to change the ELF to a
VIP by making hardware changes, this booklet
accepts the ELF’s as they are and makes the
software changes in CHIP-8 to accommodate
ELFs. Unfortunately ELF’s are not built to a
standard design like the VIP and it is therefore
difficult to write software which will suit all ELF
users. To compensate for this a detailed listing of
the interpreter is presented in the next section. It
is hoped that sufficient information is given so
that those with ELF’s which differ from
commercially available machines will be able to
modify the interpreter to suit their machines.

A Complete Elf CHIP-8 Interpreter

This section provides a listing and a
discussion of a version of CHIP-8 for COSMAC
ELF’s. The main listing of the interpreter is
designed for a 4K Elf with memory pages 00
through 0F, the configuration most commonly
used by the commercially available ELF’s. It is
also possible to use CHIP-8 in the 1 1/4K ELF’s
described in the articles in Popular Electronics,
but to do so is very tedious unless the switches
are replaced with a latched decoded keyboard.
This machine has memory pages 00, 04, 05, 06,

 - 14 -

and 07 and a version of CHIP-8 for such a
machine will also be described. The necessary
changes to CHIP-8 will be discussed in the notes
included with the full interpreter listing. Similar
changes are required when CHIP-8 is relocated
in memory and this example may aid those with
other styles of machines.

The first consideration in modifying CHIP-8
for use on the ELF is page use. The following
page use was chosen for the 4K Elf’s with
memory pages 00 through 0F:

Page Use
00 first half of interpreter
01 second half of interpreter
02 – 0D reserved for interpretive code
0E(first half) character table and interrupt

routine
0E(second half) variables, work space and

stack
0F display page

 This choice of page usage maximizes the
similarity of ELF CHIP-8 and VIP CHIP-8.
However it is possible to relocate the code to
other places in memory and it might be better to
accept the changes in CHIP-8 and place the
interpreter on pages 0C and 0D. Relocation is
necessary to implement the 1 1/4K version.
Because of this, some changes in the language
are necessary for the 1 1/4K version and the
instruction 00E0 becomes 04E0 and 00EE
becomes 04EE. Page use for the 1 1/4 K version
is as follows:

Page Use
00 display page
04 first half of interpreter
05 second half of interpreter
06 (first half) character table and interrupt

routine
06 (second half) variables, work space and

stack (There is room for a
small operating system in the
middle of page 6)

07 interpretive code

Register use is the same as it is in the VIP
version of CHIP-8 as follows:

Use of Registers

High Low

R(0) DMA address

R(1) interrupt address

R(2) stack, sometimes X register

R(3) program counter for interpreter
subroutines

R(4) program counter for control
section of interpreter

R(5) CHIP-8 instruction program
counter

R(6) variable pointer, the VX pointer

R(7) variable pointer, the VY pointer

R(8) timer timer

R(9) random
numbers

random numbers

R(A) the I pointer

R(B) display page pointer

R(C) used for scratch but available for machine
code subroutines

R(D) used for scratch but available for machine
code subroutines

R(E) used for scratch but available for machine
code subroutines

R(F) used for scratch but available for machine
code subroutines

Complete CHIP-8 Interpreter Listing

Add. Code Notes
- - first initialize the

registers
0000 F8 0E B1 high order interrupt

address
03 F8 46 A1 low order interrupt

address replace 00E
with 06 for 1 1/4K Elf

06 F8 0F BB establish display page,
replace 0F with 00 for 1
1/4K Elf

09 F8 0E B2 establish a high order
stack address replace
0E with 06 for 1 1/4K
Elf

0C B6 establish page for
variables, work space
(same as stack page)

0D F8 CF A2 establish low order
stack address

10 F8 01 B5 high order address for
first CHIP-8
instruction, replace 01
with 05 for 1 1/4K Elf

 - 15 -

13 F8 FC A5 low order address for
first CHIP-8
instruction, replace FC
with FA for 1 1/4K Elf

16 F8 00 B4 establish control section
program counter,
replace 00 with 04 for a
1 1/4K Elf

19 F8 1C A4 establish low order
address for control
section program counter

1C D4 make R(4) the program
counter, this ends
initialization of
registers

- - begin control section of
interpreter, on return
from interpreter
subroutine location 1D
is entered

1D 96 B7 establish high order VY
pointer

1F E2 establish x-register
20 94 BC make R(C).1 the current

page
22 45 load first byte of a

CHIP-8 instruction in
R(F).1

23 AF save 1st byte of
instruction to R(F).0

24 F6 F6 F6 F6 shift right 4 times to get
most significant digit

28 32 44 go to 44 if most
significant digit is 0, we
have a machine
language subroutine

2A F9 50 else or immediate
against 50 to make
pointer to table of
subroutine locations

2C AC save result in R(C).0,
the register used as a
pointer

2D 8F bring back 1st byte of
instruction

2E F9 F0 or immediate against F0
to make VX pointer

30 A6 save in R(6).0, the VX
pointer

31 05 load 2nd byte of
instruction

32 F6 F6 F6 F6 shift right to get most
significant digit

36 F9 F0 or immediate against F0
to make VY pointer

38 A7 save in R(7).0, the VY
pointer

39 4C B3 interpreter high order
subroutine address from
table to R(3).1

3B 8C FC 0F AC set up pointer to table
of low order subroutine
addresses

3F 0C A3 low order subroutine
address from table to
R(3).0, R(3) now points
to correct interpreter
subroutine

41 D3 change to subroutine
program counter

42 30 1D subroutines end with
D4, return here and go
back to treat another
interpreter instruction

- - comes to location 44 for
machine code
subroutines

44 8F reload 1st byte of
CHIP-8 instruction

45 B3 save in R(3).1, high
order machine code
subroutine address

46 45 load advance – 2nd byte
of interpreter
instruction

47 30 40 go to location 40 to set
R(3).0 and call
subroutine

- - end of control section,
except see tables of
addresses

49 22 69 12 D4 these 4 bytes are a
machine code
subroutine to turn on
1861 (TV) – obeyed in
usual way as a machine
code subroutine

4D 00 00 00 00 unused
- - next 15 bytes are high

order addresses for
interpreter subroutines,
notes show most
significant digit of
instruction (note add 04
to each address for 1
1/4K Elf)

51 01 01 01 01 1 2 3 4
55 01 00 01 01 5 6 7 8
59 01 01 01 01 9 A B C
5D 00 01 01 D E F
60 00 unused

 - 16 -

- - low order addresses –
same for 1 1/4K Elf

61 7F 78 86 8E 1 2 3 4
65 98 FC 00 C2 5 6 7 8
69 94 F1 B2 DF 9 A B C
6D 70 9C 05 D E F
- - Now starts the

remainder of the
interpreter subroutines

- - entry to the display
subroutine instruction,
DXYN, review material
in section 3 to see what
it does. R(6) is used to
point to work space,
R(A) is I (the memory
pointer), R(7).0 and
R(D),0 are used to store
N the number of bytes
to display, and R(C) is
used as pointer in to
display page

70 06 BE load VX, save in R(E).1
72 FA 3F and against 3F (only 64

positions across display
field)

74 F6 F6 F6 shift right 3 times (gets
row address, i.e. 0-7 in
display page)

77 22 52 save word address on
stack

79 07 load VY
7A FE FE FE shift left 3 times to

make space for row
address

7D F1 or on row address by
setting R(C).1 to
display page address

7E AC save in R(C).0
7F 9B BC complete address by

setting R(C).1 to
display page address

81 45 load advance, 2nd half
of instruction

82 FA 0F and off number of bytes
to display

84 AD A7 save in R(D).0 and
R(7).0

86 F8 D0 load starting address of
work space

88 A6 R(6) now points to
work space

89 F8 00 AF establish R(F).0 as a
source of 00

8C 87 load number of bytes to
display (a reentry point)

8D 32 F3 to location F3 for
housekeeping if all
done or if no bytes to
display

8F 27 decrement number of
bytes to display

90 4A BD load advance, load
display byte and save in
R(D).1

92 9E reload VX
93 FA 07 AE and against 07, save in

R(E).0, this is position
in word – say R(A)
pointed to a location
containing FF (1111
1111) and least
significant 3 bits of VX
were (011) – routine
from here to A9 would
make two adjacent
work locations (0001
1111) and (1110 0000)
i.e. it would shift the
word to be displayed
over by 3 bits and fill in
to the left and right with
0.

96 8E load word position
97 32 A2 to A2 if 00, no shift

needed
99 9D F6 BD shift 1 bit to DF, 0 to

MSB of D
9C 8F 76 AF transfer DF to R(F).0,

DF to MSB, LSB to DF
9F 2E 30 96 repeat number of times

in word address
A2 9D 56 save 1st word in work
A4 16 8F 56 save 2nd word in work
A7 16 point R(6) to next work

space
A8 30 89 repeat till all display

words treated
AA 00 idles here after

housekeeping, sees
locations F3 through
FB, still here to transfer
work to display – R(C)
points to first word to
change in display field

AB EC make R(C) the X
register

AC F8 D0 load starting address of
work

AE A6 R(6) points to work
AF F8 00 A7 00 to R(7).0 and

eventually to VF

 - 17 -

B2 8D load number of bytes to
display, reenters here
until done

B3 32 D8 all done?, to D8 to set
VF and exit

B5 06 load byte from work
B6 F2 and against display

field
B7 2D decrement bytes to

display
B8 32 BD to BD if result of and is

00, i.e. no points
already set

BA F8 01 A7 if points set make
R(7).0 and eventually
VF, 01

BD 46 reload work to D (load
advance)

BE F3 x’or against display
field

BF 5C write result to display
field

C0 02 reload VX
C1 FB 07 are we at the end of the

row?
C3 32 D1 if we are quit, no wrap

around
C5 1C else increment R(C)
C6 06 load next word from

work
C7 F2 32 CD repeat test for already

set bits
CA F8 01 A7 01 to R(7).0 if bits set
CD 06 load from work again
CE F3 5C x’or against filed and

write to field
D0 2C 16 decrement R(C),

increment R(6)
D2 8C FC 08 load R(C).0 add 08
D3 AC load new address to

R(C).0
D6 3B B2 if DF is 0 go to B2 to

do more, else we’ve run
over bottom and should
return

- - comes here when all
done

D8 F8 FF A6 load VF address to
R(6).0

DB 87 56 load R(7).0 (either 00
or 01) and store in VF

DD 12 D4 fix up stack and return
to control section

DF 00 unused – done with
main part of display
routine se F3 – FB, a
patch for housekeeping

- - entry point for 00E0
instruction (04E0 for 1
1/4k Elf) a machine
code subroutine that
erases the display page

E0 9B BF load display page
address to R(F).1

E2 F8 FF AF load FF to R(F).0
E5 F8 00 load 00 to D
E7 5F store via F
E8 8F 32 DE load R(F).0, return from

subroutine if D is 00,
all done

EB 2F 30 E5 else decrement R(F)
and go back to blank
another memory
location

- - entry point for 00EE
instruction (04EE for 1
1/4k Elf) retrieves
interpretive code
address from stack

EE 42 B5 retrieve high order
address

F0 42 A5 then low order address
R(5) now set

F2 D4 return to control section
- - part of display routine,

resets memory pointer
F3 8D A7 load number bytes to

display, save in R(7).0
F5 87 load R(7).0 to D
F6 32 AA if 00 done, go to AA to

wait for DMA
F8 2A 27 decrement R(A)

(memory pointer) and
R(7)

FA 30 F5 go back to check if
done

- - entry for 6XKK
subroutine

FC 45 load KK to D
FD 56 D4 write to VX and return
FF 00 unused, end of page 00

(04 for 1 1/4k Elf)
- - begin page 01 (05 for 1

1/4k Elf)
- - entry for 7XKK

subroutine
0100 45 load KK to D
01 E6 make R(6), VX, the X

register

 - 18 -

02 F4 add KK to VX
03 56 write result to VX
04 D4 return to control section
- - all F instructions enter

here and are set to
correct subroutines by
changing R(3)

05 45 load advance – 2nd byte
of F instruction is
location to transfer to
on this page

06 A3 change R(3) subroutine
program counter to
correct address

- - entry for FX07
subroutine

07 98 load timer value to D
(see interrupt routine)

08 56 D4 write VX and return
- - entry for FX0A

subroutine
0A 3F 0A 37 0C wait for in on, off
0E 22 push down stack
0F 6C read switch byte
10 FA 0F and against 0F to get

least significant digit
(This corresponds to
original Chip-8, could
and against FF to read
complete byte)

12 12 56 restore stack, write to
VX

14 D4 return to control section
- - entry for FX15

subroutine
15 06 load VX to D
16 B8 D4 save in R(8).1 and

return
- - entry for FX18

subroutine
18 06 load VX to D
19 A8 D4 save in R(8).1 and

return (see interrupt
routine for FX15 and
FX18 explanation)

- - the next 3 bytes are
used by the FX33
subroutine

1B 64 100 (base 10)
1C 0A 10 (base 10)
1D 01 1 (base 10)
- - entry for FX1E

subroutine
1E E6 make R(6), VX pointer,

the X register

1F 8A load low order memory
pointer address

20 F4 AA add VX, restore R(A)
22 3B 28 to 28 if DF is zero, no

overflow, exit
24 9A FC 01 else increment high

order I address
27 BA D4 restore it and return
- - entry for FX29

subroutine, table of
display patterns is on
page with interrupt
routine, pointer into
table are at the
beginning of the page

29 91 BA load interrupt page
address to R(A).1

2B 06 load VX to D
2C FA 0F and against 0F to get

least significant digit
2E AA 0A AA get low order R(A)

address from table of
pointers

31 D4 return
32 00 unused
- - entry for FX33

subroutine (hex to
decimal conversion)

33 E6 make R(6), VX pointer,
the X register

34 06 BF save VX in R(F).1
36 93 BE point R(E) to 011B,

first
38 F8 1B AE entry of table
3B 2A decrement memory

pointer
3C 1A increment memory

pointer, later enter here
3D F8 00 5A write 00 to M(R(A))
40 0E load table entry to D
41 F5 subtract VX
42 3B 4B if overflow go to 4B
44 56 else write remainder to

V6,
45 0A FC 01 5A add 01 to M(R(A)),
49 30 40 and repeat
4B 4E here if overflow – load

advance table entry
4C F6 shift right - if table

entry is 01 DF is set
4D 3B 3C back to do another digit

unless DF is set
4F 9F 56 here if done - restore

VX
51 2A 2A restore memory pointer
53 D4 return to control section

 - 19 -

54 00 unused
- - entry for FX55

subroutine transfer
variables to memory

55 22 push down stack
56 86 52 load contents of R(6).0

to stack (one of F0-FF)
58 F8 F0 A7 point R(7) to V0
5B 07 load V0, on later entry

V1, etc.
5C 5A write to M(R(A))
5D 87 F3 load R(7).0 and x'or

against stack byte -
passed VX pointer - if
result is 00 we're done

5F 17 1A increment R(7) and
memory pointer

61 3A 5B go to 5B to transfer
next VX unless done

63 12 D4 else restore stack
pointer, return

- - entry for FX65
subroutine transfer
memory to variables

65 22 push down stack
66 86 52 transfer contents of

R(6).0 to stack, on of
F0-FF

68 F8 F0 A7 point R(7) to V0
6B 0A load M(R(A)) to D,

enters here later
6C 57 write in V0, V1, V2,

etc.
6D 87 F3 load R(7).0 and x'or

against stack byte - if
result is 00 we're done

6F 17 1A increment R(7) and
memory pointer

71 3A 6B go to 5B to transfer
next byte unless done

73 12 D4 else restore stack
pointer, return

- - entry for FX75
subroutine transfer VX
to hex display

75 E6 make VX pointer the X
register

76 12 D4 output VX and return
- - entry for 2MMM

subroutine, go to
interpreter subroutine

78 15 85 store return interpreter
code

7A 22 73 address on stack
7C 95 52

7E 25 restore R(5) to point to
2nd half of instruction

- - entry for 1MMM
subroutine rest of code
through location 85 is
shared

7F 45 A5 load MM to D and
transfer to R(5).0

81 86 FA 0F retrieve M (most
significant part) from
R(6).0

84 B5 D4 set R(5).1 and return
- - entry for 3XKK

subroutine - skip if VX
equals KK

86 45 load KK to D
87 E6 F3 make VX pointer X

register, x'or VX
against KK

89 3A 8D return if D does not
equal zero

8B 15 15 else skip
8D D4 return to control section
- - entry for 4XKK

subroutine
8E 45 load KK to D
8F E6 F3 make VX pointer X

register, x'or VX
against KK

91 3A 8B skip if D does not equal
zero

93 D4 else return
- - entry for 9XY0

subroutine, skip if VX
does not equal VY

94 45 set R(5) to next
instruction

95 07 load VY to D
96 30 8F transfer to 8F to

complete instruction
- - entry for 5XY0

subroutine
98 45 set R(5) to next

instruction
99 07 load VY to D
9A 30 87 transfer to 87 to

complete instruction

 - 20 -

- - entry for E subroutine
EX9E - skip if VX
equals keys (LSD),
EXA1 - skip if VX does
not equal keys (LSD),
see Section 4 Hardware
Differences. Designed
to be as close as
possible to original use
in VIP

9C 22 push down stack
9D 6C switch byte to stack, D
9E 06 F3 load VX, x'or against

switch byte
A0 FA 0F and off least significant

digit of answer
A2 52 write result to stack
A3 45 F6 load advance - shift

right 0 to DF for EX9E
instruction, I to DF for
EXA1 instruction

A5 42 load back stack byte,
restore stack

A6 3B AD to AD for EX9E
instruction, carry on for
EXA1 instruction

A8 3F 8B skip if in not depressed
AA 3A 8B skip if in depressed but

wrong key
AC D4 else return
AD 3F B1 skip if in not depressed
AF 32 8B skip if in depressed but

wrong key
B1 D4 else return
- - entry for BMMM

instruction, go to
0MMM plus V0

B2 F8 F0 A7 point R(7) to V0
B5 E7 make R(7) the X

register
B6 45 load MM
B7 F4 add V0 and D
B8 A5 save it in R(5).0
B9 86 FA 0F load R(6).0 to retrieve

most significant part of
MMM, and off

BC 3B C0 to C0 if no overflow on
addition, all done

BE FC 01 else add 01 to D
C0 B5 D4 set R(5).1 and return
- - entry for 8XYN

instructions, identical to
those in demonstration
interpreter

C2 45 load YN to D
C3 FA 0F and off N to get 0N

C5 3A CA go to CA unless N is
zero

C7 07 56 D4 if N is 00 load VY,
write to VX, return

- - here on other *XYN
instructions, see
demonstration
interpreter for method
used

CA AF 22 save 0N in R(F),0, push
down stack

CC F8 D3 73 load D3, write to stack
CF 8F F9 F0 load 0N, or against F0
D2 52 write one of F1, F2, F3,

F4, F5, F6, F7, or FE to
stack

D3 E6 make VX pointer, X
register

D4 07 D2 load VY and go to stack
D6 56 on return save result as

VX
D7 F8 FF A6 point R(6) at VF
DA F8 00 make D equal 00
DC 7E 56 shift DF into D and

write to VF
DE D4 return
- - entry for CXKK

subroutine, random
number generator

DF 19 increment R(9) -
random byte - see
interrupt routine

E0 89 AE 93 BE pint R(E) to some byte
on this page

E4 99 load R(9).1 - random
byte from interrupt

E5 EE make R(E) the X
register

E6 F4 56 add the two random
bytes, save in VX

E8 76 shift right with carry -
scramble D

E9 E6 make VX pointer the X
register

EA F4 B9 add, use result to
change R(9).1 as it isn't
changed often in
interrupt routine

EC 56 save result to VX
ED 45 F2 load KK and and

against VX
EF 56 D4 save result as VX and

return
- - entry for AMMM

subroutine, set I pointer

 - 21 -

F1 45 AA load MM - transfer to
R(A).0

F3 86 FA 0F retrieve M from R(6),o
(MSD)

F6 BA complete memory
pointer

F7 D4 end of interpreter
subroutines

- - remaining 8 locations
are used for interpretive
code, starting address of
interpretive code is 01
FC for 4k interpreter,
05FA for 1 1/4
interpreter

F8 00 00 unused, this is 4K
version

FA 00 00 unused
FC 00 E0 erase display page
FE 00 49 turn on TV
02 00 - start of interpreter code
- - for 1 1/4k version
05 F8 00 00 unused
FA 04 E0 erase display page
FC 04 49 turn on TV
FE 17 00 transfer to page 7 for

interpreter code

Character Table and Interrupt Routine

Add. Code Notes
- - This code could go on

any page, as written it is
on page 0E for the 4k
version and page 06 for
the 1 1/4k version

- - first 16 bytes are
pointers for the
characters 0-F

0E 00 30 39 22 2A pointers to 0, 1, 2, 3
04 3E 20 24 34 pointers to 4, 5, 6, 7
08 26 28 2E 18 pointers to 8, 9, A, B
0C 14 1C 10 12 pointers to C, D, E, F
- - next 51 bytes are the

display symbols for the
characters, 5
bytes/symbol

10 F0 80 start E display
12 F0 80 start F display
14 F0 80 start C display
16 80 80
18 F0 50 start B display
1A 70 50
1C F0 50 start D display
1E 50 50
20 F0 80 start 5 display
22 F0 10 start 2 display

24 F0 80 start 6 display
26 F0 90 start 8 display
28 F0 90 start 9 display
2A F0 10 start 3 display
2C F0 10
2E F0 90 start A display
30 F0 90 start 0 display
32 90 90
34 F0 10 start 7 display
36 10 10
38 10 60 start 1 display (starts at

39)
3A 20 20
3C 20 70
3E A0 A0 start 4 display
40 F0 20
42 20 end of display

characters
- - begin interrupt routine,

entry point is 0E 46 (06
46 for 1 1/4k Elf)

43 7A Q (tone) off
44 42 70 restore D and return

from interrupt
46 22 push stack down, entry

to interrupt
47 78 22 52 save X, P; push, save D
4A C4 no op, necessary 3

cycle instruction
4B 19 increment R(9), random

number (see instruction
CXKK)

4C F8 00 A0 set low order address of
DMA pointer

4F 9B B0 set high order address
of DMA pointer

51 E2 E2 make up necessary 29
machine cycles

53 80 E2 load R(0).0 to D
- - DMA 1
55 E2 20 A0 restore DMA address
- - DMA 2
58 E2 20 A0 restore DMA address
- - DMA 3
5B E2 20 A0 restore DMA address
- - DMA 4
5E 3C 53 continue till done
60 9B R(8).1 is timer, load it

(see FX07 and FX15
instructions)

61 32 67 if D is zero go to 67,
timer is timed out, leave
alone

 - 22 -

63 AB 2B 8B B8 else subtract 01 from
timer, method used
does not disturb the DF
flag. DF is not changed
by the interrupt routine

67 88 load R(8).0 tone
duration, see FX18
instruction

68 32 43 if tome duration is over
go to 43

6A 7B continue with or start
tone

6B 28 decrement R(8).0, tone
duration

6C 30 44 return, leaving tone on
- - end of interpreter

Extending the CHIP-8 Instruction Set

The CHIP-8 interpreter is well organized and
constructed and as a result it is easy to modify
and extend. If a specific task, for example the
control of a robot, is to be programmed the
interpretive language can be changed to suit the
application. Let's look at how we might extend
the current CHIP-8 instructions. There are two
main types of instructions one might wish to add,
those which involve pointers to two of the CHIP-
8 variables, (e.g. like 8XYN) and those which
require a ;pointer to a single CHIP-8 variable
(e.g. 6XKK).

The first group of instructions might be
created by expanding either the 5XY0 instruction
or the 9XY0 instruction. Say we chose to expand
the 5XY0 instruction. The entry point for the
5XY0 instruction would be changed to point to a
third CHIP-8 page. The least significant hex digit
of the instruction would be examined and if it
was 00 the instruction would have its usual
meaning. However if the last hex digit was 1, 2,
etc., the new operations would be performed.

As an example let's expand the 5XY0
instruction to the following set:
5XY0 skip if VX=VY; the next interpreter

instruction is skipped over if VX
equals VY (original meaning)

5XY1 skip if VX>VY; the next interpreter
instruction is skipped over if VX is
greater than VY

5XY2 skip if VX<VY; the next interpreter
instruction is skipped over if VX is
less than VY

5XY3 skip if VX≠VY; the next interpreter
instruction is skipped over if VX
does not equal VY

We will place the new subroutines in the
middle of page 0E between the interrupt routine

and the bottom of the CHIP-8 stack. The entry
point of the new interpreter subroutine will be 0E
70 (06 70 for the 1 1/4k Elf). CHIP-8 must be
modified so that the 5 instructions transfer
control to this address in the interpreter. Replace
the 01 at location 00 55 with 0E (06 in the
corresponding place for the 1 1/4k Elf) and
replace the 98 at location 00 65 with 70.

Additional Skip Instructions
Expansion of the 5XY0 Instruction

Add. Code Notes
0E 70 93 BC set R(C).1 to current

page
72 45 load advance 2nd

CHIP-8 byte, now VY
73 FA 03 and off 00, 01, 02, or 03

depending on
instruction

75 FC 7D add starting address of
table of locations

77 AC point R(C) to proper
entry in table

78 0C AC pick up table entry,
point R(C) to proper
subroutine address

7A 07 E6 load VY, make R(6) the
X register

7C DC go to one of four
subroutines

7D 81 address for 5XY0
instruction

7E 8B address for 5XY1
instruction

7F 8F address for 5XY2
instruction

80 87 address for 5XY3
instruction

- - entry for 5XY0
81 F3 x'or VX against VY
82 3A 86 return if D does not

equal 00
84 15 15 D4 else skip and return
- - entry for 5XY3
87 F3 x'or VX against VY
88 3A 84 skip if D does not equal

00
8A D4 else return
- - entry for 5XY1
8B F7 subtract VX from VY
8C 3B 84 skip if DF equals zero
8E D4 else return
- - entry for 5XY2
8F F5 subtract VY from VX
90 3B 84 skip if DF equals zero

 - 23 -

92 D4 else return, end of
5XYN subroutines

Among the instructions that the interpreter
lacks are simple multiply and divide instructions
to go along with its addition and subtraction
instructions. Let's expand the 9XY0 instruction
to add these instructions to CHIP-8. Multiply and
divide instructions are necessarily 16 bit ones,
the product of two 8 bit numbers may be up to
16 bit long and of course we need 16 bits to
represent the quotient and remainder from the
division of two 8 bit numbers. An additional
variable will be required to hold the most
significant byte from a multiplication and the
remainder form a division. VF is already a
special variable and will be used to hold the most
significant [art of the product in a multiplication
and the remainder in division. As well it would
be nice to be able to represent the product of a
multiplication as a decimal number and a 16 bit
hex to decimal conversion routine will also be
added.

The new "9" instructions will be located
starting at the beginning of page 0D and we shall
have to change the address of the "9" instructions
in the interpreter. Memory location 00 59 should
be changed from 01 to 0D and memory location
00 69 should be changed from 94 to 00.

The new instructions are:

9XY0 skip if VX≠VY; the next interpreter
instruction is skipped over VX does
not equal VY (unchanged)

9XY1 set VF, VX equal to VX times VY
where VF is the most significant
part of a 16 bit word

9XY2 set VX equal to VX divided by VY
where VF is the remainder

9XY3 let VX, VY be treated as a 16 bit
word with VX the most significant
part and convert to decimal; 5
decimal digits are stored at M(I),
M(I+1), M(I+2), M(I+3), and
M(I+4), I does not change

Multiply, Divide and 16 Bit Display
Instructions Expansion of 9XY0 Instruction

Add. Code Notes
0D 00 93 BC set R(C).1 to current

page
02 45 load 2nd CHIP-8 byte,

YN
03 FA 03 and off 00, 01, 02, or 03
05 FC 18 add starting address of

table of locations

07 AC point R(C) to proper
entry in table

08 0C AC pick up table entry ,
point R(C) to proper
subroutine address

- - before calling
subroutine get ready for
multiply and divide

0A E7 R(7), VY pointer the X
register

0B 96 BE point R(E) to VF
0D F8 FF AE
10 F8 00 5E set VF to 00
13 F6 clear DF flag
14 F8 09 AD initialize counter for

shifts to 09
- - now call subroutines
17 DC go to one of 4

subroutines
18 80 address for 9XY0

instruction
19 1C address for 9XY1

instruction, multiply
1A 2D address for 9XY2

instruction, divide
1B 46 address for 9XY3

instruction, hex to
decimal conversion

- - multiply routine entry,
works by shift and add
method like pencil and
paper multiplication

1C 0E 76 5E shift double length
1F 06 76 56 bit to the left
22 2D 8D decrement and load

counter
24 32 34 done when counted out
26 3B 1C back if DF is 00,

nothing to add
28 0E F4 5E else add VY to VF,
2B 30 1C before going back
- - end of multiply routine,

begin divide routine -
first check for division
by zero

2D 07 load VY to D
2E 3A 35 if not equal to zero go

on
30 F8 FF else set quotient and

remainder to FF and
32 56 5E D4 return
- - here if divisor greater

than 0, division method
similar to multiplication

35 0E F7 load VF, subtract VY
37 3B 3A to 3A on overflow

 - 24 -

39 5E else save result in VF
3A 06 7E 56 shift one bit left
3D 2D 8D decrement, load counter
3F 32 34 return when counted

out
41 0E 7E 5E shift one bit left
44 30 35 return to 35 for next

subtraction
- - entry to 9XY3

subroutine, hex to
decimal conversion (5
decimal digits) method
is similar to that for
FX33 instruction

46 06 BF save VX
48 07 AF save VY
4A 9C BE point R(E) to 1 less

than starting address
4C F8 75 AE of table of powers of 10
4F 2A decrement memory

pointer
50 1A 1E increment memory

pointer, table pointer
52 F8 00 5A set memory pointer

location to 00
55 E7 VY pointer (least

significant byte) is the
X register

56 4E F5 load table entry,
subtract from VY

58 E6 VX pointer (most
significant byte) is the
X register

59 0E 75 load table entry,
subtract with carry

5B 2E decrement table pointer
5C 3B 69 to 69 if overflow done

with this digit
5E 56 else update VX
5F E7 0E F5 57 and update VY
63 0A FC 01 5A increment memory

pointer location
67 30 55 and go back till

overflow
- - here on overflow
69 4E F6 load table entry, check

for done
6B 3B 50 if not done to 50 for

next digit
- - here when done
6D 9F 56 restore VX
6F 8F 57 restore VY
71 2A 2A 2A 2A restore memory pointer
75 D4 return
- - table entries

76 10 27 10000 (base 10)
2710 (base 16)

78 E8 03 1000 (base 10)
03E8 (base 16)

7A 64 00 100 (base 10)
0064 (base 16)

7C 0A 00 10 (base 10)
000A (base 16)

7E 01 00 1 (base 10)
0001 (base 16)

- - entry for (XY0
subroutine (original
instructions)

80 07 load VY
81 E6 make VX pointer the X

register
82 F3 x;or VY against VX
83 3A 86 if D not equal to zero,

skip
85 D4 else return
86 15 15 D4 skip and return

If one has an ASCII device connected to an
ELF, perhaps a keyboard, it would be convenient
to have a CHIP-8 instruction which would create
symbols for the characters in ASCII code. Such
an instruction is presented last, the FX94
instruction. This instruction uses the space left
unused in the interpreter by the expansion of the
"5" and "9" instructions and creates symbols for
the 64 characters in 6 bit ASCII. In operation it
works exactly like the FX29 instruction except
that the memory pointer is set to the address of
one of the 64 ASCII symbols corresponding to
VX instead of to the address of one of the 16
symbols 0-F. If the "5" and "9" instructions have
not been expanded this instruction can, as well,
replace the FX29 instruction and ways to
implement either alternative will be given.

The instruction fits on a single page; each of
the 64 ASCII symbols are coded by 3 bytes
which requires 192 memory locations and the
remainder of the subroutine fits in the 64
locations remaining. The construction of this
instruction is quite simple. The first 16 locations
on the page are patterns which are available to
construct the symbols. Each ASCII symbol is
designated by 5 hex digits which correspond to
the patterns needed to construct the symbol. The
sixth hex digit in the three words used to code
each symbol serves as an indicator of the length
of the symbol. When an FX94 (FX29)
instruction is carried out this value is transferred
to V0 where it can be used to get a pleasing
spacing of the symbols.

 - 25 -

The symbols are relatively crude, both
because of the poor resolution of the ELF
graphics and also because they consist of
combinations of only 16 patterns. However they
are easily recognized and make the presentation
of ASCII data relatively with the aid of a very
simple interpreter program.

The method used to transfer control from the
interpreter to the new subroutine is to change the
program counter from R(3) to R(C). This change
has to be done in the interpreter and the address
of the new subroutine must first be loaded to
R(C). If the ASCII subroutine is located on page
0C the proper entry point is 0C D0. To make an
FX94 instruction add the following code to the
interpreter on page 01 (4k version):

Add. Code Notes
01 94 F8 D0 AC point R(C).0 to D0
97 F8 0C BC point R(C).1 to page 0C
9A DC make R(C) the program

counter

This code overwrites the locations which were
used for the "5" and "9" instructions. The same
code, but located starting at address 01 29, would
change the FX29 instruction to the ASCII
instruction.

Six-Bit ASCII Symbols Subroutine

Add. Code Notes
- - subroutine can reside

on any page, here it is
on page 0C

- - the first 16 locations are
the patterns available to
make up the symbols

0C 00 00 (blank)
01 10 *
02 20 *
03 88 * *
04 A8 * * *
05 50 * *
06 F8 *****
07 70 ***
08 80 *
09 90 * *
0A A0 * *
0B B0 * **
0C C0 **
0D D0 ** *
0E E0 ***
0F F0 ****
- - locations 10 through CF

are codings for the 64
ASCII symbols, 3 bytes
to a symbol

- - A diagram giving the
order in which the
patterns are assembled
from the bytes is:
 XX XX XX
 45 23 61
where the 6th hex digit
contains the width of
the character, at most 5
bits. The first ASCII
character (hex 00) is @,
its coding is 46, 3E, 56
which gives:
pattern 6 - *****
pattern 3 - * *
pattern E - ***
pattern 4 - * * *
pattern 6 - *****
The character is 5 bits
long

10 46 3E 56 00 - @
13 99 9F 4F 01 - A
16 5F 57 4F 02 - B
19 8F 88 4F 03 - C
1C 5F 55 4F 04 - D
1F 8F 8F 4F 05 - E
22 88 8F 4F 06 - F
25 9F 8B 4F 07 - G
28 99 9F 49 08 - H
2B 27 22 47 09 - I
2E AE 22 47 0A - J
31 A9 AC 49 0B - K
34 8F 88 48 0C - L
37 43 64 53 0D - M
3A 99 DB 49 0E - N
3D 9F 99 4F 0F - O
40 88 9F 4F 10 - P
43 9F 9B 4F 11 - Q
46 A9 9F 4F 12 - R
49 1F 8F 4F 13 - S
4C 22 22 56 14 - T
4F 9F 99 49 15 - U
52 22 55 53 16 - V
55 55 44 54 17 - W
58 53 52 53 18 - X
5B 22 52 53 19 - Y
5E CF 12 4F 1A - Z
61 8C 88 3C 1B - [
64 10 C2 40 1C - \
67 2E 22 3E 1D -]
6A 30 25 50 1E - ^
6D 06 00 50 1F - _
70 00 00 40 20 - space
73 0C CC 2C 21 - !
76 00 50 45 22 - "
79 65 65 55 23 - #
7C 46 46 56 24 - $

 - 26 -

7F DF BF 4F 25 - %
82 5F AF 4E 26 - &
85 00 80 18 27 - '
88 21 22 41 28 - (
8B 12 11 42 29 -)
8E 53 56 53 2A - *
91 22 26 52 2B - +
94 2E 00 30 2C - ,
97 00 06 50 2D - -
9A CC 00 20 2E - .
9D C0 12 40 2F - /
A0 9F 99 4F 30 - 0
A3 22 22 32 31 - 1
A6 8F 1F 4F 32 - 2
A9 1F 1F 4F 33 - 3
AC 22 AF 4A 34 - 4
AF 1F 8F 4F 35 - 5
B2 9F 8F 4F 36 - 6
B5 11 11 4F 37 - 7
B8 9F 9F 4F 38 - 8
BB 1F 9F 4F 39 - 9
BE 80 80 10 3A - :
C1 2E 20 30 3B - ;
C4 21 2C 41 3C - <
C7 E0 E0 30 3D - =
CA 2C 21 4C 3E - >
CD 88 1F 4F 3F - ?
- - end of character table,

entry point for ASCII
display subroutine

- - first point R(a),
memory pointer to a
scratch place in random
access memory - here at
bottom of stack

D0 F8 0E BA point R(A).1 to page 0E
D3 F8 9F AA point R(A).0 to 9F, just

below stack, R(A).0
points to 9B when
returning from
subroutine

D6 9C load page number to D
D7 B3 BD point R(3).1 and R(D).1

to this page
D9 F9 F0 A7 point R(7) to V0
DC Ea make R(A), memory

pointer, the X register
DD 06 FA 3F load VX, and off 6 bits
E0 5A F4 F4 write to M(R(X)), add

twice to get number
times 3

E3 FC 10 add starting address of
character table

E5 AD R(D) now points to
correct location in large
table

- - entry point for
successive table bytes

E6 0D FA 0F load table entry, and off
least significant digit

E9 A3 point R(3) to correct
entry in table of
patterns (small table)

EA 03 73 pick up pattern, write to
random access memory,
decrement I

EC 4D pick up byte again, this
time advance R(D)

ED F6 F6 F6 F6 shift right to get most
significant digit

F1 A3 point R(3) to correct
entry

F2 8A load R(A).0
F3 FB 9A check, have we done 5

patterns?
F5 32 FB if D is 00 we're done,

go to set V0 and return
F7 03 73 else pick up pattern,

write to random access
memory

F9 30 E6 and return for next table
entry

- - here on return
FB 83 retrieve length of

symbol from R(3).0
FC 57 write to V0
FD 1A D4 fix up R(A) and return

The reader would probably like to see what
these characters look like when displayed. Here
is an interpretive program which can be used to
display all of the ASCII symbols. The program
waits for a switch byte (0-F) and when it is
entered displays the corresponding ASCII
symbol in the upper left of the screen followed
by as many ASCII symbols as the screen has
room for. If the byte in the interpreter (4K) at
location 01 11 is changed from 0F to FF
complete switch bytes (00-FF) can be entered.

Program to Display ASCII Characters

Add. Code Notes
0200 F50A V5 equals keys - waits

for in button
02 6600 V6 = 00
04 6700 V7 = 00, display

pointers
06 6B3F VB = 3F, line length
08 F594 (F529?) set I to V5

ASCII symbol, V0 =
symbol length

0A 7501 V5 = V5 + 01

 - 27 -

0C D675 display the symbol at
V6, V7

0E 8604 V6 = V6 + V0
10 7601 V6 = V6 + 01, space

between symbols
12 8D60 VD = V6
14 F594 (F529?) set I, V0 for

next symbol
16 8DD4 VD = VD + V0, add

length of next symbol
to VD

18 8DB5 VD = VD - VB, check
will it extend past line
end?

1A 3F01 skip if VF is 01, over
the end of line

1C 1208 O.K. go back and
display

1E 6600 reset to new line
20 7706 V7 = V7 + 06, set line

down
22 471E skip unless V7 is 1E,

we're off bottom
24 1224 stop - screen is full
26 1208 return to do another line

It is hoped that these examples demonstrate
the ease with which the CHIP-8 interpreter can
be extended and modified. One of the limitations
of CHIP-8, the fact that only memory locations
0000 through 0FFF are available to it, can be
overcome by redesigning the interpreter to
address memory in 4k fields. A field designation
instruction is used to change from one 4k field to
another. A relocatable 1k interpreter which
includes all of the material presented in this
booklet, as well as a field instruction, is listed in
the Appendix. The field instruction is a four byte
one which has the form, FFFF, MMMM. M is
the new field and MMM is the address of the
first instruction to be obeyed in the new field.
For example to transfer to a new field:

Add. Code Notes
0FD0 6300 set V3 to 0D
D2 6400 set V4 to 00
D4 650a set V5 to 0A
D6 FFFF field instruction go to
D8 1004 field 1, 004
- -
10 04 F529 point to symbol for A
06 D345 display A
- - etc.

More ambitious programs can be written with
the 4K memory restraint removed. The field
designation is stored in R(B).0 and is set on entry

to the interpreter, if less than 4k of memory is
available it can be ignored.

 - 28 -

Appendix

The interpreter listed below is relocatable and
can be placed on any four contiguous pages (e.g.
0A00 - 0DFF for 4k Elf). It must be entered with
R(3) as the program counter. Enter at location
0000 for default values for the first interpreter
instruction (01FE), the display page (0F), and the
page for variables and constants (0E). To change
the default values set R(5) to the address of the

first interpreter instruction, set R(B).1 to the
display page, set R(6).1 to the page for variables
and constants, and enter the interpreter at
location 000C. The default value for the location
of the first interpreter instruction (01FE) allows
space for an erase display instruction (00E0)
before a program which starts at location 0200.
The FX29 instruction in this interpreter does not
alter the value of V0.

0000 F8 01 B5 F8 FE A5 F8 0F
0008 BB F8 0E B6 95 FA F0 AB
0010 96 B2 F8 CF A2 E3 70 23
0018 93 B4 FC 02 B1 F8 D3 A1
0020 F8 25 A4 69 D4 96 B7 45
0028 AF F6 F6 F6 F6 32 4D FC
0030 69 AC 8F F9 F0 A6 05 F6
0038 F6 F6 F6 F9 F0 A7 94 BC
0040 EC F4 B3 8C FC 0F AC 0C
0048 A3 E2 D3 30 25 8F 32 54
0050 B3 45 30 48 94 FC 02 B3
0058 05 FB EE 32 66 FB 0E 32
0060 64 8F 30 50 FC 05 FC 07
0068 30 48 01 01 02 02 02 02
0070 01 01 02 01 01 01 00 01
0078 01 7F 78 1B 1F 27 23 00
0080 C4 4F F3 AD E1 88 96 05
0088 06 BE FA 3F F6 F6 F6 22
0090 52 07 FE FE FE F1 AC 9B
0098 BC 45 FA 0F AD A7 F8 D0
00A0 A6 F8 00 AF 87 32 F7 27
00A8 4A BD 9E FA 07 AE 8E 32
00B0 BA 9D F6 BD 8F 76 AF 2E
00B8 30 AE 9D 56 16 8F 56 16
00C0 30 A1 00 EC F8 D0 A6 F8
00C8 00 A7 8D 32 F0 06 F2 2D
00D0 32 D5 F8 01 A7 46 F3 5C
00D8 02 FB 07 32 E9 1C 06 F2
00E0 32 E5 F8 01 A7 06 F3 5C
00E8 2C 16 8C FC 08 AC 3B CA
00F0 F8 FF A6 87 56 12 D4 8D
00F8 A7 87 32 C2 2A 27 30 F9

0100 45 E6 F4 56 D4 45 A3 98
0108 56 D4 3F 0A 37 0C 22 6C
0110 FA 0F 12 56 D4 06 B8 D4
0118 06 A8 D4 64 0A 01 E6 8A
0120 F4 AA 3B 28 9A FC 01 BA
0128 D4 F8 B0 30 8E 00 00 00
0130 15 15 D4 E6 06 BF 93 BE
0138 F8 1B AE 2A 1A F8 00 5A
0140 0E F5 3B 4B 56 0A FC 01
0148 5A 30 40 4E F6 3B 3C 9F
0150 56 2A 2A D4 00 22 86 52
0158 F8 F0 A7 07 5A 87 F3 17
0160 1A 3A 5B 12 D4 22 86 52
0168 F8 F0 A7 0A 57 87 F3 17
0170 1A 3A 6B 12 D4 E6 64 D4
0178 15 95 22 73 85 52 25 45
0180 A5 86 FA 0F 22 52 8B F1
0188 B5 12 D4 00 F8 C0 AC 93
0190 FC 02 BC DC 30 BC 22 6C
0198 06 F3 FA 0F 52 45 F6 42
01A0 3B A7 3F 30 3A 30 D4 3F
01A8 AB 32 30 D4 00 F8 F0 A7
01B0 E7 45 F4 A5 86 FA 0F 3B
01B8 BB FC 01 E2 22 52 8B F1
01C0 B5 12 D4 00 45 FA 0F 3A
01C8 CC 07 56 D4 AF 22 F8 D3
01D0 73 8F F9 F0 52 E6 07 D2
01D8 56 F8 FF A6 F8 00 7E 56
01E0 D4 19 89 AE 93 BE 99 EE
01E8 F4 56 76 E6 F4 B9 56 45
01F0 F2 56 D4 45 AA 86 FA 0F
01F8 22 52 8B F1 BA 12 D4 45

 - 29 -

0200 22 73 FA F0 AB 05 52 42
0208 A5 42 B5 D4 15 9B BF F8
0210 FF AF F8 00 5F 8F 32 0B
0218 2F 30 12 45 E6 30 38 45
0220 E6 30 3E 45 56 D4 00 93
0228 BC 45 FA 03 FC 34 AC 0C
0230 AC 07 E6 DC 38 42 46 3E
0238 F3 3A 3D 15 15 D4 F3 3A
0240 3B D4 F7 3B 3B D4 F5 3B
0248 3B D4 07 E6 30 3E 00 93
0250 BC 45 FA 03 32 4A FC 68
0258 AC 0C AC E7 96 BE F8 FF
0260 AE F8 00 5E F6 F8 09 AD
0268 DC 6C 7D 96 0E 76 5E 06
0270 76 56 2D 8D 32 84 3B 6C
0278 0E F4 5E 30 6C 07 3A 85
0280 F8 FF 56 5E D4 0E F7 3B
0288 8A 5E 06 7E 56 2D 8D 32
0290 84 0E 7E 5E 30 85 06 BF
0298 07 AF 9C BE F8 C5 AE 2A
02A0 1A 1E F8 00 5A E7 4E F5
02A8 E6 0E 75 2E 3B B9 56 E7
02B0 0E F5 57 0A FC 01 5A 30
02B8 A5 4E F6 3B A0 9F 56 8F
02C0 57 2A 2A 2A 2A D4 10 27
02C8 E8 03 64 00 0A 00 01 00
02D0 7A 42 70 22 78 22 52 C4
02D8 19 F8 00 A0 9B B0 E2 E2
02E0 80 E2 E2 20 A0 E2 20 A0
02E8 E2 20 A0 3C E0 22 76 52
02F0 98 32 F6 FF 01 B8 42 7E
02F8 88 32 D0 7B 28 30 D1 00
0300 00 10 20 88 A8 50 F8 70
0308 80 90 A0 B0 C0 D0 E0 F0
0310 46 3E 96 F9 F9 5F 57 FF
0318 88 F8 5F 55 FF F8 F8 88
0320 8F FF B9 F8 99 9F 79 22
0328 72 AE 22 97 CA 9A 8F 88
0330 38 44 36 99 DB F9 99 F9
0338 88 9F FF B9 F9 A9 9F FF

0340 F1 F8 22 22 F6 99 99 22
0348 55 53 45 44 53 52 23 22
0350 35 CF 12 CF 88 C8 10 C2
0358 E0 22 E2 30 25 60 00 00
0360 00 00 C0 C0 CC 00 50 55
0368 56 56 46 46 F6 FD FB 5F
0370 AF 0E 00 88 21 22 21 11
0378 21 53 56 23 62 22 2E 00
0380 00 6D 00 CC 00 00 2C 01
0388 9F 99 2F 22 22 8F 1F FF
0390 F1 F1 22 AF FA F1 F8 9F
0398 8F 1F 11 F1 9F 9F FF F1
03A0 F9 80 80 E0 02 02 21 2C
03A8 01 0E 0E 2C 21 8C F8 F1
03B0 06 AF FA 0F F9 30 56 FD
03B8 39 33 C2 FD 40 56 30 C2
03C0 06 AF 96 BA F8 9F AA 9C
03C8 B3 BD EA 06 FA 3F 5A F4
03D0 F4 F4 F4 76 3B DB FC 10
03D8 AD 30 E9 FC 10 AD 0D FA
03E0 0F A3 8A FB 9A 32 F8 03
03E8 73 4D F6 F6 F6 F6 A3 8A
03F0 FB 9A 32 F8 03 73 30 DE
03F8 8F 56 1A D4 00 00 00 00

 - 30 -

Notes

The FX00 and FX75 instructions cause failures when X is F because R(6) "turns" a page; R(6) should

be decremented after the use of an output (64) instruction.

When using the relocatable interpreter place all the machine code subroutines in field 0 (0000 to

0FFF); they are accessible to calls from any of the 16 fields.

 - 31 -

Notes

Additional copies of this booklet can be ordered from:
Paul C. Moews
16 B Yale Road

Storrs, CT 06268

The price, $5.50, includes first class postage and handling.
Two other booklets with programs for the basic 1/4k Elf are also available:

1. Music and Games
2. Graphics

for $3 each, postpaid.

