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Introduction 

This booklet’s purpose is to explain the construction and operation of an interpreter for the COSMAC 
1802 “ELF”. It assumes that the reader has some knowledge of the 1802 instruction set and is able to write 
simple machine language programs. Mnemonics are not provided because most ELF owners do not have 
access to assemblers and must work directly in machine language. Instead, programs are explained in a 
documented, step-by-step fashion, that it is hoped will make the concepts involved easy to follow. 

The interpretive language described is “CHIP-8”, the language used by RCA Corporation in its 
“COSMAC VIP” computer. CHIP-8 is a simple language consisting of about 30 instructions. RCA’s 
interpreter is elegant and well thought out; once understood it is easily changed and modified. 

This booklet contains five sections; in the first section a simple demonstration interpreter is introduced. 
This demonstration interpreter runs in the basic 1/4 “ELF” and its instructions are a subset of the full CHIP-
8 instruction set. While simple, the demonstration interpreter employs methods similar to those in the full 
interpreter. 

Further sections discuss the full CHIP-8 instruction set, hardware differences between the “VIP” and 
the “ELF”, and provide a listing of a complete ELF interpreter together with suggestions for implementing 
it on various machines. The final section discusses the extension of the CHIP-8 instruction set. Examples 
are provided for multiply and divide instructions together with an instruction which displays characters for 
the 64 six bit ASCII symbols. 

I should like to thank RCA Corporation for permission to write about CHIP-8 and to modify it for the 
ELF. However RCA is not responsible for any of the material in this booklet. The programs described here 
have been thoroughly tested on a number of versions of the COSMAC “ELF” as described in Popular 
Electronics articles and are believed to be reliable but there is, of course, still the possibility that they 
contain unexpected errors. This kind of interpreter is rather hardware dependent and changes in 
input/output lines or in the use of flag lines will cause failures. An attempt was made to provide sufficient 
documentation so that the user can make the changes necessary to implement CHIP-8 on a variety of 
machines. 
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A Demonstration Interpreter 

The surprising power of computers is due to 
the development of languages which organize 
programming into different levels of complexity. 
Perhaps the simplest way to organize 
programming with a language is to use an 
interpreter. One can consider an interpreter to be 
a program that converts the basic instruction set 
to a new language, a set of instructions that 
better suits the programmer. Alternately an 
interpreter can be thought of as a program with a 
control section and a number of subroutines, the 
new language now instructs the interpreter as to 
which subroutines to call and in which order. 
The subroutines perform "tasks" which are more 
complicated than those performed by a single 
machine code operation. The ubiquitous basic 
interpreter is a good example. 

RCA's CHIP-8 language is an interpretive 
one and it converts the 94 machine language 
instructions of the 1802 microprocessor to a new 
set of about 30 more powerful and convenient 
instructions. Each type of statement in the new 
language is implemented by a machine code 
subroutine which carries out the desired 
operation. It differs from a basic interpreter in 
that most of the operations carried out by the 
subroutines are small ones, consisting of only a 
few machine code instructions, and the language 
is therefore a simple one without many of the 
features of basic. However quite powerful 
programs can be written with a few hundred 
CHIP-8 instructions. 

This section introduces a version of CHIP-8 
for the 1/4K Elf. Ten of the instructions are a 
subset of the full CHIP-8 set and are identical to 
those in CHIP-8. Two additional instructions, 
read a byte from the keyboard and display a byte 
on the hex display, have no exact counterparts in 
the CHIP-8 set. 

CHIP-8 instructions consist of four hex 
digits. The first hex digit determines the type of 
instruction; there are therefore 16 basic kinds of 
CHIP-8 instructions. The next 3 hex digits are 
used in several different ways. The can be used 
to specify a memory location, and as there are 3 
hex digits available, any memory location from 
000 to FFF can be specified. In the 
demonstration interpreter only the two least 
significant hex digits are needed for this purpose 
because it is necessary to address only a single 
page of memory. 

A basic feature of CHIP-8 is that it provides 
16 one byte variables, designated V0 through 
VF. Thus a single hex digit can be used to 

specify one of these variables. In many pt the 
CHIP-8 instructions the second most significant 
hex digit is used for this purpose, leaving the last 
two hex digits available for other uses. In 
arithmetic operations the two variables to be 
added, etc. are specified by the second and third 
hex digit leaving the last hex digit to designate 
the type of arithmetic operation to carry out. 

Before beginning a discussion of how the 
interpreter works, it is necessary to have an 
understanding of the language and its use. The 
instructions available are shown in Table 1. 

Table 1 

Demonstration Interpreter Instructions 

00MM do a machine code subroutine at 
location MM (The machine code 
subroutine must end with D4) 

10MM go to MM; control is transferred to 
location MM in the interpretive code 

20MM do an interpreter subroutine at location 
MM (The interpreter subroutines must 
end with 009E) 

4XKK skip if VX≠KK; the next interpreter 
instruction is skipped over if VX does 
not equal KK 

6XKK set VX=KK; variable X is made equal 
to KK 

8XY0 set VX=VY; variable X is made equal 
to variable Y 

8XY1 set VX=VY or VY; variable X is made 
equal to the result of VX logically ored 
against VY (Note that VF is changed) 

8XY2 set VX=VX and VY; variable X is 
made equal to the result of VX logically 
anded against VY (Note that VF is 
changed) 

8XY3 set VX=VX xor VY; variable X is made 
equal to the result of VX logically xored 
against VY (note that VF is changed) 

8XY4 set VX=VX+VY; variable X is made 
equal to the sum of VX and VY (Note 
that VF becomes 00 if the sum is less 
than or equal to FF and 01 if the sum is 
greater than FF) 

8XY5 set VX=VX-VY; variable VX is made 
equal to the difference between VX and 
VY (Note that VF becomes 00 if VX is 
less than VY and 01 if VX is greater 
than or equal to VY) 

8XY6 set VX equal to VY shifted right 1 bit 
position, (Note bit 0 is shifted into VF) 

8XY7 set VX=VY-VX; variable VX is made 
equal to the difference between VY and 
VX (Note that VF becomes 00 if the 
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sum is less than or equal to FF and 01 if 
the sum is greater than FF) 

8XYE set VX equal to VY shifted left 1 bit 
position (Note bit 7 is shifted into VF) 

DXKK display VX on the hex display, KK 
indicates the length of a pause for 
display 

FX00 set VX equal to the switch byte; waits 
for the input button to be pushed and 
released 

An easy way to see how these instructions 
are used is to illustrate them with a simple 
program. The interpreter is listed at the end of 
the chapter and can be used to run these sample 
programs. 

To start let's look at the following program. It 
reads 2 switch bytes, displays them, adds them, 
and displays the result. If overflow occurs, that is 
also displayed. The program uses only 10 
interpreter instructions (The first instruction 
3071 is actually machine code and transfers 
control on entry to the interpreter; It is not part of 
the interpretive code.) The interpreter has a 
program counter for interpretive code (R(5)) 
which is set on entry to the address of the first 
instruction (M(0002)). The first interpretive 
language instruction is 63EE which sets variable 
number 3 equal to EE. 

Interpretive Addition Program 

Add. Code Notes 
00 3071 entry to interpreter 
02 63EE set V3 equal to EE 
04 F400 set V4 equal to switch byte, 

waits for in on, off 
06 D4FF display V4 on hex display 

for about 1.8 seconds 
08 F500 set V5 equal to switch byte 
0A D5FF display V5 on hex display 
0C 8454 set V4 equal to V4 + V5 
0E D4FF display V4, now the sum of 

V4 + V5 
10 4F01 skip next instruction if VF ≠ 

01, remember VF will be set 
to 01 by the 8454 
instruction if overflow 
occurs 

12 D3FF display V3 (V3 was set 
equal to EE) this instruction 
is skipped if VF is anything 
but 01 

14 1004 go back to instruction 04 to 
wait for next number 

The above program illustrates most of the 
demonstration interpreter instructions; an 

important exception is the interpreter subroutine 
call. Unlike the SEP register technique used in 
simple machine code programs, interpreter 
subroutines do not have to return to the main 
program but can be called from other 
subroutines. A stack is employed to store the 
return address when a subroutine call is made 
and successive calls to subroutines, without 
returns, push the stack further down. In the 
demonstration interpreter the stack pointer, R(2), 
points to the last location used and is pushed 
down one before a new byte is added to the 
stack. Each time a return from a subroutine 
occurs the stack pointer is incremented by one. 

The next program is a simple illustration of 
the use of an interpreter subroutine. A switch 
byte is entered and displayed. It is then counted 
down by three's until underflow occurs. A 
subroutine is used to implement the counting 
down by three. 

Program to Illustrate Subroutine use 

Add. Code Notes 
00 3071 entry to interpreter 
02 F500 set V5 equal to switch byte, 

waits for in on, off 
04 D5FF display V5 on hex display 

for about 1.8 seconds 
06 200A call interpreter subroutine at 

location 0A 
08 1002 on return from subroutine 

go to location 02 to read 
another switch byte 

- - begin interpretive 
subroutine 

0A 6603 set V6 equal to 03 
0C 8565 set V5 equal to V5 - V6 
0E D540 display V5 for ca 0.4 

seconds 
10 4F01 skip next instruction if 

underflow occurs during the 
subtraction, VF equals 00 
on underflow 

12 100C transfer to location 0C to 
subtract three more 

14 009E return from subroutine 

In the above program, the call to the 
subroutine uses one stack position to store the 
return address. When the interpreter is entered 
the stack pointer is set to location 71. On calling 
the subroutine it is decremented by one, to 
location 70, and 08, the location the interpreter 
should execute on return from subroutine, is 
stored there. If we examine location 70 after 
running this program 08 will be found there. 
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Two additional stack locations, 6E and 6F are 
used by 8565 instruction, these locations become 
F5 and D3 respectively. An explanation of why 
this occurs is given in the demonstration 
interpreter listing. 

The interpreter also includes an instruction, 
00MM, which executes a machine code 
subroutine at address MM. This is easily 
accomplished; the control section of the 
interpreter treats the machine code subroutine as 
if it were one of the subroutines written to 
execute CHIP-8 instruction. All the subroutines 
which execute CHIP-8 instructions end with a 
D4 byte. 

The following program poses simple addition 
problems and illustrates most of the 
demonstration interpreter instructions. It contains 
a machine language subroutine which generates 
two random numbers when the in button is 
pushed. On entry, the program displays AA and 
the Q light comes on. When the input button is 
pressed a simple addition problem (base 10) is 
presented; for example 17AD (for and) 32E0 (for 
equals) may be displayed. If 00 is entered the 
problem is shown again, if the correct answer is 
entered it is displayed followed by AA. However 
if an incorrect answer is entered EE is shown 
followed by the correct answer. The program 
requires 36 interpreter instructions and a 
machine language subroutine of 25 bytes. An 
interpreter subroutine is used to generate two 
random numbers in VD and VE. The displayed 
numbers are all less than 99 (base 10) to 
accommodate the hex display and the simple hex 
to decimal conversion routine which fails for 
numbers greater or equal to 100 (base 10). 

Program for Addition Problems 

Add. Code Notes 
00 3071 entry to interpreter 
02 60E0 set V0 equal to E0 
04 61EE set V1 equal to EE 
06 62AD set V2 equal to AD 
08 63AA set V3 equal to AA 
0A D300 display V3 (AA) on the 

display but no delay for 
display 

0C 004A call machine language 
subroutine which 
generates random 
numbers in VD and VE 
when in is pushed 

0E 8BE0 set VB equal to VE as 
preparation for summing 
the two random numbers 

10 8BD4 set VB equal to VD + 
VE, sum of the two 
random numbers 

12 203A call the interpreter 
subroutine which 
converts from hex to 
decimal, answer is 
returned in VA and VB 
is changed 

14 8CA0 save answer on return 
from subroutine by 
setting VC equal to VA 

16 8BE0 set VB equal to VE, one 
of the random numbers 

18 203A call subroutine to make 
VA the decimal 
equivalent of VB 

1A DAFF display VA, first random 
number (base 10) 

1C D2FF display V2 (AD) 
1E 8BD0 set VB equal to VE the 

other random number 
20 203A call subroutine to make 

VA the decimal 
equivalent of VB 

22 DAFF display VA, second 
random number 

24 D0FF display V0 (E0) 
26 F600 make V6 the entered 

byte 
28 4600 skip the next instruction 

if V6 is equal to 00 
2A 1016 here only if V6 is 00, 

back to 16 to repeat 
display 

2C D6FF display V6, the entered 
byte 

2E 86C5 set V6 equal to V6 - VC, 
VC is the correct answer 
(base 10) 

30 4600 skip next instruction 
unless V6 equals 00, i.e. 
skip on wrong answer 

32 100A transfer to 0A to show 
AA if answer is correct 

34 D1FF display V1 (EE) 
36 DCFF display VC, correct 

answer 
38 100C transfer to 0C to begin 

next problem 
- - end of main, begin hex to 

decimal conversion 
subroutine, subroutine 
adds 06 to VB for every 
time 0A occurs, 
argument is passed in 
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VB and returned in VA 
3A 8AB0 set VA equal to VB 
3C 6906 set V9 equal to 06 
3E 680A set V8 equal to 0A 
40 8B85 set VB equal to VB - V8, 

i.e. subtract 0A from VB 
42 4F00 skip next instruction if 

VF equals 00, i.e. skip 
unless underflow 

44 009E return from subroutine 
on underflow 

46 8A94 set VA equal to VA + 
V9, i.e. add 06 to VA 

48 1040 transfer to location 40 to 
subtract 0A from VB, 
this is the end of the 
subroutine 

- - start of machine 
language subroutine, 
random numbers from 1 
through 50 (base 10) are 
generated in VD and VE, 
R(6) is used to point to 
VD and VE, see 
interpreter listing for a 
better understanding of 
how this routine works 

4A 7B entry point, turn Q on 
4B E6 make R(6) the X register 
4C F8 FE A6 load the address of VE to 

R(6) 
4F F8 33 load 51 (base 10) to D 
51 FF 01 subtract 01 from D 
53 32 4F transfer to 4F if D is zero 
55 3F 51 transfer to 51 unless in 

pushed 
57 73 here when in pushed, 

store number in VE point 
R(6) to VD 

58 F8 32 load 50 (base 10) to D 
5A FF 01 subtract 01 from D 
5C 32 58 transfer to 58 id D is zero 
5E 37 5A transfer to 5A unless in 

released 
60 56 store number in VD 
61 7A D4 turn Q off and return, 

end of program 

The above program illustrates one of the 
weaknesses of CHIP-8. There is no way to pass 
arguments to interpreter subroutines except 
through the variables and we must execute a 
number of variable transfer instructions to use 
the hex to decimal interpreter subroutine. This 
weakness is partly overcome in the full 
interpreter by the inclusion of instructions which 

transfer the variables to and from memory. The 
full interpreter also includes an instruction which 
generates random numbers and a hex to decimal 
conversion routine. In the next section this 
program has been rewritten for the full 
interpreter. 

Now let’s look at the listing for the 
demonstration interpreter. It uses the 16 
locations F0 through FF to store the 16 variables. 
The interpreter examines each instruction in turn 
and carries out the desired operation by calling 
the correct subroutine. It uses the following 
registers: 

Demonstration Interpreter Register Use 

R(2) stack pointer 
R(3) set to address of machine code 

subroutine that carries out instruction, 
i.e. subroutine program counter 

R(4) program counter for control section of 
interpreter 

R(5) program counter for interpretive code 
R(6) VX pointer, points to one of 16 

variables 
R(7) VY pointer, points to one of 16 

variables 
R(C) used to point to a table of addresses 
 

The interpreter is designed for use on a single 
page of memory and will work in the basic 1/4K 
Elf as it stands. For expanded systems R(2), 
R(3), R(4), R(5), R(6), R(7) and R(C) have to 
have their high order bytes set to the page the 
interpreter resides on. Perhaps the simplest way 
to do this initialization for an expanded system is 
to change the entry point of the interpreter from 
71 to 68 and add the following code from 
locations 68 through 73: 

Add. Code Notes 
68 F8 00 load page number 

to D, here 00 but 
interpreter can be 
on any page 

6A B2 B3 B4 initialize registers 
6D B5 B6 B7 BC initialize register 
71 F8 68 A2 establish top of 

stack at M(68) 
instead of at M(71) 

Note that the stack pointer is now initialized at 
location 68 instead of at location 71. Alternately 
one can place the interpreter on a higher page in 
memory, do the initialization of the registers on 
page 00 and then transfer control to the 
interpreter. If this method is used the interpretive 
code can start at location 00 and R(5).0, the 
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address of the first interpreter instruction, can be 
set to 00. 

Demonstration Interpreter Listing 

Add. Code Notes 
71 F8 71 A2 establish stack pointer 
74 F8 7A A4 R(4) will be program 

counter for control 
section of interpreter 

77 F8 02 A5 R(5) is program counter 
for interpretive code, 
first instruction is at 
M(02) 

7A D4 establish program 
counter for control 
section 

7B E2 make R(2) the X 
register, this is the entry 
point for return to 
control section after 
completing a subroutine 
call 

7C 45 AF load first half of 
instruction and save it 
in R(F).0 

7E F6 F6 F6 F6 shift right to get most 
significant digit most 
significant digit 
determines type of 
instruction 

82 32 98 if D is zero (type 0 
instruction) we have 
machine code 
subroutine call, transfer 
to location 98 

84 F9 A0 else or against A0 to get 
address from table of 
subroutine locations 
(see locations A1 to 
AF) 

86 AC save address in R(C).0 
87 8F bring back instruction 
88 F9 F0 or against F0 to get VX 

address 
8A A6 establish R(6) as VX 

pointer  
8B 05 load second half of 

instruction, note that 
R(5) is left pointing to 
second half of 
instruction 

8C F6 F6 F6 F6 shift right to get VY 
pointer 

90 F9 F0 or against F0 to get VY 
address 

92 A7 establish R(7) as VY 
pointer 

93 0C A3 pick up subroutine 
address from table and 
point R(3) to subroutine 

95 D3 call subroutine to do 
instruction 

96 30 7B on return from 
subroutine go to 7B for 
next instruction 

98 45 30 94 here for machine code 
subroutine, load address 
to D and go to 94 to 
establish R(3) 

- - begin subroutine for 
6XKK instruction 

9B 45 56 load KK to D, store in 
VX 

9D D4 return to control section 
- - 9E through A0 is a 

machine code 
subroutine that restores 
R(5) on return from 
interpreter subroutine 

9E 42 load return address 
from stack 

9F A5 D4 restore R(5) and return 
- - the next 15 bytes are 

the subroutine locations 
A1 B5 B0 E5 B8 
A5 E5 9B E5 C0 
A9 E5 E5 E5 E5 
AD E7 E5 DD 

i.e. go to B5 for 10MM 
instructions, go to B0  
for 20MM instructions, 
etc. illegal instructions 
go to E5 where they are 
ignored 

- - subroutine for 20MM 
instructions 

B0 15 85 load return address to D 
B2 22 52 save on stack, push 

stack down first 
B4 25 restore R(5) so that it 

points to MM 
- - rest of this subroutine is 

shared with 10MM 
instructions 

B5 45 A5 load MM change R(5) 
to point to new address 

B7 D4 return 
- - begin subroutine for 

4XKK instruction 
B8 45 load KK to D 
B9 E6 make R(6) the X 

register, the VX pointer 
BA F3 x’or VX against KK 
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BB 32 BF return immediately if D 
equals 0, i.e. if VX 
equals KK 

BD 15 15 else increment 
instruction program 
counter twice 

BF D4 return 
- - here begin the 8XYN 

instructions 
C0 45 load YN to D 
C1 FA 0F and off N to get 0N in 

D 
C3 3A C8 go to C8 unless N is 

zero 
C5 07 56 load VY, write to VX 
C7 D4 return 
- - here on other 8XYN 

instructions, makes up 
FN D3 on stack, 
transfers control to 
stack and obeys the two 
instructions, uses R(2) 
as program counter 

C8 AF save 0N 
C9 22 push stack down 
CA F8 D3 73 load D3 to D, write to 

stack 
CD 8F F9 F0 load 0N, or against F0 

to get F1, F2, F3, F4, 
F5, F6, F7, or FE 

D0 52 write to stack 
D1 E6 make VX pointer the X 

register 
D2 07 load VY to D 
D3 D2 go to stack to obey FN 

D3 instructions 
D4 56 on return save result as 

VX 
D5 F8 FF A6 point R(6) to VF 
D8 F8 00 clear D 
DA 7E 56 shift DF into D and 

save as VF 
DC D4 return 
- - begin FX00 subroutine 
DD 7B Q on to indicate waiting 

for byte 
DE 3F DE wait for in on 
E0 37 E0 wait for in off 
E2 E6 make VX pointer the X 

register 
E3 6C switch byte to VX 
E4 7A turn Q off 
E5 45 D4 advance instruction 

counter, return – also 
used for illegal 
instructions 

- - begin DXKK 
subroutine 

E7 E6 make VX pointer the X 
register 

E8 64 display VX 
E9 45 BF load KK to R(F).1 
EB 2F 9F decrement R(F), load 

R(F).1 
ED 3A EB go to EB unless D is 

zero, delay loop 
EF D4 return – end of 

interpreter 
F0-FF - locations where the 16 

interpreter variables are 
stored 

The Chip-8 Language 

This section contains a brief discussion of the 
CHIP-8 language and a list of the available 
instructions. Further information about RCA’s 
VIP machine and about CHIP-8 can be found in 
two articles by Joseph Weisbecker (“COSMAC 
VIP, the RCA Fun Machine”, in the August, 
1977 Byte magazine p. 30, and “An Easy 
Programming System”, in the December, 1978 
Byte magazine p.108) and in RCA’s literature. 
The full CHIP-8 instruction set is listed in the 
table at the end of this chapter. 

Many of the basic features of the CHIP-8 
language are explained and illustrated in section 
2 and the demonstration interpreter contains ten 
instructions which are identical to those in the 
full CHIP-8 set. The complete language is 
designed for use with low resolution graphics 
and the display subroutine is the longest and 
most complex of the subroutines in the 
interpreter. A number of TV games have been 
written with CHIP-8 and it is well suited for this 
purpose. The display instruction is used in 
conjunction with a memory pointer and the 
CHIP-8 variables and has the form DXYN. The 
values of VX and VY indicate where on the 
video display to show information, and the value 
of N indicates how many bytes to display. A 
memory pointer, called I, gives the starting 
address of the information to be displayed and 
must be set by other instructions. Positions in the 
display field are determined by a rectangular 
coordinate system with the origin in the upper 
left corner; 64 horizontal positions, designated 
by VX and 32 vertical positions designated by 
VY, are available. The bytes to be displayed are 
exclusively ored against the display field; an 
important feature for TV games. Portions of 
memory bytes which extend beyond the display 
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field on the right or at the bottom are truncated, 
there is no wrap around. 

Another important feature of the language is 
the 16 one byte variables, V0 through VF, which 
are held in random access memory. Two of these 
variables V0 and VF are used for special 
purposes. V0 is used in a kind of computed go 
statement, the BMMM instruction. Control is 
transferred to location MMM to which has been 
added the value of V0. As in the demonstration 
interpreter, VF is used to indicate overflow in 
arithmetic operations. It is also used to indicate 
when a display instruction attempts to show a 
position which is already being displayed. As the 
display instruction exclusively or’s the data to be 
displayed against the display field, such an 
attempt turns off the displayed position. VF is set 
to 01 to indicate this occurrence. This serves as a 
simple way to determine if a missile has struck a 
target in a TV game. 

A third important feature of CHIP-8, already 
mentioned in the discussion of the display 
routine, is the memory pointer, I. The memory 
pointer can be set both directly and indirectly; 
besides its use as a display pointer, it also serves 
as a pointer for transferring variables to and from 
memory. 

The full CHIP-8 instruction set has six skip 
instructions all of which follow the principle of 
the skip instruction included in the 
demonstration interpreter. That is, the next 
interpreter instruction is skipped over if on 
testing a condition it is found to be true. 

The instructions which have 8 as the first 
hexadecimal digit perform arithmetic and logic 
operations and are all included in the 
demonstration interpreter. Note again that VF is 
used to indicate overflow and that the value of 
VF is changed by 8XY1, 8XY2, 8XY3, 8XY4, 
8XY5, 8XY6, 8XY7, and 8XYE instructions. 

A number of instructions which are not 
included in the demonstration interpreter are the 
“F” instructions. Several of these are used in 
conjunction with the memory pointer. For 
example the FX29 instruction points I at a 5 byte 
memory pattern which corresponds to the least 
significant hex digit of VX. If V7 were 38 and 
F729 instruction were executed I would point to 
the first byte of the series F0, 90, F0, 90, F0 (a 
pattern for the symbol “8”) and DXY5 
instruction would show an “8” on the display. 
The FX33 instruction is a binary to decimal 
conversion routine. The value of VX is 
converted to a 3 digit decimal number with the 
hundreds digit stored at location I, the tens digit 
at location I + 1, and the units digit at location I 

+ 2. The FX55 and FX56 instructions use the  
memory pointer to transfer values from memory 
to the variables , respectively. 

Other “F” instructions include a settable tone 
generator (FX18) (see the section on Hardware 
Differences), an instruction to set a timer 
(FX15), an instruction to read the timer (FX07), 
and an instruction to read the keyboard (FX0A). 
An additional “F” instruction has been added for 
the Elf; FX75, which displays the value of VX 
on the hex display. 

Other useful instructions which are not 
present in the demonstration interpreter include a 
random number generator (CXKK where KK is 
anded against a random byte before being 
transferred to VX), and an instruction which 
adds a byte to one of the variables, 7XKK. Two 
of the CHIP-8 instructions 00E0 (erase display) 
and 0DEE (return from a CHIP-8 subroutine) are 
implemented as machine code subroutines 
resident in the interpreter itself. They are 
therefore dependant upon the page where CHIP-
8 is located and will have to be changed if CHIP-
8 is relocated. This also is the reason that the 
return from a subroutine is 009E in the 
demonstration interpreter and 00EE in the full 
CHIP-8 interpreter. 

To illustrate the use of the full instruction set, 
let’s rewrite one of the programs that used the 
demonstration interpreter, the one involving 
addition problems. The following program 
constructs simple addition problems using two 
randomly chosen numbers between 0 and 127. 
On entry to the program a problem is presented, 
e.g. 076 + 093 = ?. An answer is entered through 
the keyboard one digit at a time (i.e. 1, 6, 3) and 
when the last digit is entered 163 is displayed. A 
C flows the entered number if it is correct and an 
E if it is incorrect. In the case of an incorrect 
answer the correct answer is also shown. 
Another problem is given when any key is 
entered. The program consists of 67 CHIP-8 
instructions and also uses 32 bytes for constants 
and work space. 

Program for Addition Problems 

Add. Code Notes 
0200 00E0 erase display 
- - first set up problems and answer 
0202 CD7F VD equals random number 
0204 CE7F VE equals random number 
0206 8CD0 VC = VD 
0208 8CE4 VC = VD + VE (the answer) 
- - next convert to decimal and 

display the problem 
020A A2A2 point I to work space 



 - 11 - 

020C 6A00 set VA = 00, display pointer 
020E 6B00 set VB = 00, display pointer 
0210 FD33 M(I) equals 3 digit decimal 

equivalent of VD 
0212 F265 V0, V1, V2 equals M(I) 
0214 2276 call CHIP-8 subroutine (displays 

3 digit number in V0, V1, and 
V2) 

0216 A288 point I to + pattern 
0218 7A07 VA = VA + 07, display pointer 
021A DAB

5 
display + pattern 

021C A2A2 point I to work space 
021E 7A08 VA = VA + 08, display pointer 
0220 FE33 M(I) equals 3 digit decimal 

equivalent of VE 
0222 F265 V0, V1, V2 equals M(I) 
0224 2276 call subroutine to display VE 
0226 A28E point I to = pattern 
0228 7A07 VA = VA + 07, display pointer 
022A DAB

4 
display = pattern 

022C A292 point I to ? pattern 
022E 6A18 set VA = 18, display pointer 
0230 6B08 set VB = 08, display pointer 
0232 DAB

F 
display ? pattern 

- - now read in possible answer 
0234 F00A V0 = least significant digit of 

switch byte 
0236 F10A V1 = switch byte (LSD) 
0238 F20A V2 = switch byte (LSD) 
023A DAB

F 
display ? pattern (erases it) 

023C 6A15 set VA = 15, display pointer 
023E 2276 call subroutine to display entered 

answer 
- - now compute answers, right to 

025c, wrong to 0262 
0240 A2A5 point I to work space 
0242 F255 V0, V1, V2 – correct answer 
0244 A2A2 V3, V4, V5 – entered answer 
0246 FC33 V3 = V3 – V0 
0248 F565 skip to 0262, error 
024A 8305 V4 = V4 – V1 
024C 3300 skip if V3 = 00 
024E 1262 go to 0262, error 
0250 8415 V4 = V4 – V1 
0252 3400 skip if V4 = 00 
0254 1262 go to 0262, error 
0256 8525 V5 = V5 – V2 
0258 3500 skip if V5 = 00 
025A 1262 go to 0262, error 
- - here if answer correct 
025C 660C set V6 = 0C 
025E F618 set tone duration (reward) 

0260 126A go to 026A 
- - here if answer wrong 
0262 6A15 set VA = 15, display pointer 
0264 6B10 set VB = 10, display pointer 
0266 2276 call subroutine to display correct 

answer 
0268 660E V6 = 0E 
026A 6A26 VA = 26, display pointer 
026C 6B08 VB = 08, display pointer 
026E F629 point I to C or E pattern 
0270 DAB

5 
display C or E 

0272 F00A wait for any input 
0274 1200 to 0200 for next problem 
- - subroutine to display 3 digit 

number held in V0, V1, V2 
0276 F029 point I to pattern for V0 
0278 DAB

5 
display it 

027A 7A05 VA = VA + 05, display pointer 
027C F129 point I to pattern for V1 
027E DAB

5 
display it 

0280 7A05 VA = VA + 05, display pointer 
0282 F229 point I to pattern for V1 
0284 DAB

5 
display it 

0286 00EE return from subroutine 
- - patterns and work space 
0288 2020 pattern for + sign 
028A F820  
028C 2000  
028E 00FF pattern for ? sign 
0290 00FF  
0292 FFFF  
0294 0303  
0296 03FF  
0298 FFC0  
029A C0C0  
029C C0C0  
029E 00C0  
02A0 C000  
02A2 - work space 
02A4 -  
02A6 -  

Table 2 

Full Interpreter Instructions 

0MMM do a machine code subroutine at 
location 0MMM (The machine 
code subroutine must end with D4) 

1MMM go to 0MMM; control is transferred 
to location 0MMM in the 
interpretive code 



 - 12 - 

2MMM do an interpreter subroutine at 
location 0MMM (the interpreter 
subroutine must end with 00EE) 

3XKK skip if VX = KK; the next 
interpreter instruction is skipped 
over if VX equals KK 

4XKK skip if VX ≠ KK; the next 
interpreter instruction is skipped 
over if VX does not equal KK 

5XY0 skip if VX = VY; the next 
interpreter instruction is skipped 
over if VX equals VY (see 9XY0) 

6XKK set VX = KK; variable X is made 
equal to KK 

7XKK set VX = VX + KK; add KK to 
variable X 

8XY0 set VX = VY; variable X is made 
equal to variable Y 

8XY1 set VX = VX or VY; variable X is 
made equal to the result of VX 
logically or'ed against VY (Note 
that VF is changed) 

8XY2 set VX = VX and VY; variable X is 
made equal to the result of VX 
logically anded against VY (Note 
that VF is changed) 

8XY3 set VX = VX xor VY; variable X is 
made equal to the result of VX 
logically xor'ed against VY (Note 
that VF is changed) 

8XY4 set VX = VX + VY; variable X is 
made equal to the sum of VX and 
VY (Note that VF becomes 00 if 
the sum is less than or equal to FF 
and 01 if the sum is grater than FF) 

8XY5 set VX = VX – VY; variable X is 
made equal to the difference 
between VX and VY (Note that VF 
becomes 00 if VX is less than VY 
and 01 if VX is greater than or 
equal to VY) 

8XY6 set VX = VY shifted right 1 bit 
position (Note bit 0 is shifted into 
VF) 

8XY7 set VX = VY - VX; variable X is 
made equal to the difference 
between VY and VX (Note that VF 
becomes 00 if VY is less than VX 
and 01 if VY is greater than or 
equal to VX) 

8XYE set VX = VY shifted left 1 bit 
position (Note bit 0 is shifted into 
VF) 

9XY0 skip if VX ≠ VY; the next 
interpreter instruction is skipped 

over if VX does not equal VY (see 
5XY0) 

AMMM point I at 0MMM; the memory 
pointer is set to 0MMM 

BMMM go to 0MMM + V0, the value of 
V0 is added to 0MMM and control 
is transferred to the resulting 
location 

CXKK set VX to a random byte; random 
byte is anded against KK first 

DXYN display N byte pattern at 
coordinates VX, VY; I (memory 
pointer) gives starting locations to 
be displayed. The displayed 
locations are exclusively ored 
against display field. VF becomes 
01 if some of the display field is 
already set, 00 if it is not. 

EX9E skip if VX = hex key; skip next 
instruction if the least significant 
digit of VX equals the least 
significant digit of the keyboard. 

EXA1 skip if VX ≠ hex key; skip next 
instruction if the least significant 
digit of VX does nor equal the least 
significant digit of the keyboard 

FX07 set VX to the value of the timer; 
timer is counted down in interrupt 
routine 

FX0A set VX = hex key; sets VX equal to 
the least significant digit of the 
keyboard, waits for in on, off 

FX15 set timer to VX; timer is counted 
down in interrupt routine so 01 is 
ca. 1/60th second 

FX18 set tone duration to VX; turns Q on 
for duration specified by VX, 01 is 
ca. 1/60th second 

FX1E set I to I + VX; add the value of 
VX to the memory pointer 

FX29 point I to pattern for least 
significant digit of VX 

FX33 convert VX to decimal; 3 decimal 
digits are stored at M(I), M(I + 1), 
and M(I + 2), I does not change 

FX55 save V0 through VX in memory at 
locations specified by I, V0 at M(I), 
V1 at M( I+1), etc, I becomes I + X 
+ 1 

FX65 transfer memory locations specified 
by I to variables V0 through VX, 
V0 becomes M(I), V(1) becomes 
M(I + 1), etc, I becomes I + X + 1 

FX75 display the value of VX on the hex 
display 



 - 13 - 

00E0 erase the display (actually a 
machine language subroutine 
resident in the interpreter) 

Hardware Differences between 1802 Computers 

The most important difference between the 
various versions of the CCOSMAC ELF and the 
COSMAC VIP is the keyboard. The COSMAC 
VIP has a hex keyboard; however it is not 
connected to an input port,. Instead the least 
significant 4 bits of a bus output byte (Out 2, 62) 
are decoded and the 16 output lines connected to 
the corresponding hex keys. Each key is 
connected to one of the flag lines (EF3). To 
determine which key is depressed requires a 
software routine which scans the keyboard. 
Scanning is done by repeatedly outputting the 16 
possible least significant hex digits and 
examining the flag line to see which digits  cause 
it to be pulled low. Debouncing is also  carried 
out within the software routines; there is an 
approximately 1/15 second software delay to 
debounce both opening and closing of a 
keyboard switch. 

COSMAC ELF computers on the other hand 
are variable in design and have a variety of ways 
to input information from keyboards or switches. 
Indeed the September, 1976 issue of Popular 
Electronics describes a way to connect a scanned 
hex keyboard, much like that contained in the 
VIP, to the ELF. However most of the 
commercially available ELFs (e.g. Super Elf and 
Elf-2) have latched hex keyboards with roll-over. 
The latches are connected to an input port and 
one can examine the contents of these latches at 
any time under software control. A hardware 
debounced button (the in button) can be used as a 
device to indicate to a software routine that we 
wish the switch latches read. An additional 
feature of the Elf is the ability to carry out direct 
memory access input from the keyboard by 
depressing the in button when the computer is in 
the load mode. This feature is not required by the 
VIP which has an operating system in ROM. 

These different methods in inputting 
information from the keyboard have different 
advantages and disadvantages, neither is really 
totally satisfactory. The VIP’s keyboard has one 
significant advantage. All of the keys are 
connected directly to a flag line and it is possible 
to tell, with software, when a key is being 
depressed and if so which one. A quick response 
to keyboard entry is therefore possible and this 
property is particularly desirable for TV games. 
It also makes possible an operating system which 
enters bytes directly from the keyboard to 

memory without the necessity of pushing an in 
button. These features are more difficult with a 
roll-over latched keyboard like that found in 
many ELFs. Entered bytes can only be read from 
latches and there is no way, with software, to 
determine when a single key is repeatedly 
entered; that is we could never determine if B, B, 
B, B was entered because the contents of the 
latches would never change. This difficulty 
could, of course, be overcome with some simple 
hardware changes to the ELF. 

The advantage of the ELF keyboard is that 
the contents of the keyboard latches can be 
transferred directly to memory by instituting a 
direct memory access cycle. This, in fact, is what 
makes the ELF a viable machine without read 
only memory. However the ELF would be easier 
to use if the contents of the keyboard latches 
were displayed and if a signal were provided 
which made it unnecessary to push the in button. 

Another hardware difference is in the 
treatment of the Q line. In the VIP the Q line is 
attached to a simple oscillator, and this in turn 
can be connected to a speaker. Hence in the VIP 
when the Q line is turned on, a tine is heard in 
the loudspeaker. This feature can be added to an 
ELF without much difficulty. It should perhaps 
be mentioned that the VIP has room on board for 
one input and one output port, the output uses 
out-3 (63), and the input port uses in-3 (6B). 

Rather than attempt to change the ELF to a 
VIP by making hardware changes, this booklet 
accepts the ELF’s as they are and makes the 
software changes in CHIP-8 to accommodate 
ELFs. Unfortunately ELF’s are not built to a 
standard design like the VIP and it is therefore 
difficult to write software which will suit all ELF 
users. To compensate for this a detailed listing of 
the interpreter is presented in the next section. It 
is hoped that sufficient information is given so 
that those with ELF’s which differ from 
commercially available machines will be able to 
modify the interpreter to suit their machines. 

A Complete Elf CHIP-8 Interpreter 

This section provides a listing and a 
discussion of a version of CHIP-8 for COSMAC 
ELF’s. The main listing of the interpreter is 
designed for a 4K Elf with memory pages 00 
through 0F, the configuration most commonly 
used by the commercially available ELF’s. It is 
also possible to use CHIP-8 in the 1 1/4K ELF’s 
described in the articles in Popular Electronics, 
but to do so is very tedious unless the switches 
are replaced with a latched decoded keyboard. 
This machine has memory pages 00, 04, 05, 06, 



 - 14 - 

and 07 and a version of CHIP-8 for such a 
machine will also be described. The necessary 
changes to CHIP-8 will be discussed in the notes 
included with the full interpreter listing. Similar 
changes are required when CHIP-8 is relocated 
in memory and this example may aid those with 
other styles of machines. 

The first consideration in modifying CHIP-8 
for use on the ELF is page use. The following 
page use was chosen for the 4K Elf’s with 
memory pages 00 through 0F: 

Page Use 
00 first half of interpreter 
01 second half of interpreter 
02 – 0D reserved for interpretive code 
0E(first half) character table and interrupt 

routine 
0E(second half) variables, work space and 

stack 
0F display page 

 This choice of page usage maximizes the 
similarity of ELF CHIP-8 and VIP CHIP-8. 
However it is possible to relocate the code to 
other places in memory and it might be better to 
accept the changes in CHIP-8 and place the 
interpreter on pages 0C and 0D. Relocation is 
necessary to implement the 1 1/4K version. 
Because of this, some changes in the language 
are necessary for the 1 1/4K version and the 
instruction 00E0 becomes 04E0 and 00EE 
becomes 04EE. Page use for the 1 1/4 K version 
is as follows: 

Page Use 
00 display page 
04 first half of interpreter 
05 second half of interpreter 
06 (first half) character table and interrupt 

routine 
06 (second half) variables, work space and 

stack (There is room for a 
small operating system in the 
middle of page 6) 

07 interpretive code 

Register use is the same as it is in the VIP 
version of CHIP-8 as follows: 

Use of Registers 

High Low 

R(0)  DMA address 

R(1)  interrupt address 

R(2)  stack, sometimes X register 

R(3)  program counter for interpreter
subroutines 

R(4)  program counter for control
section of interpreter 

R(5)  CHIP-8 instruction program
counter 

R(6)  variable pointer, the VX pointer 

R(7)  variable pointer, the VY pointer 

R(8) timer timer 

R(9) random 
numbers 

random numbers 

R(A)  the I pointer 

R(B)  display page pointer 

R(C) used for scratch but available for machine 
code subroutines 

R(D) used for scratch but available for machine 
code subroutines 

R(E) used for scratch but available for machine 
code subroutines 

R(F) used for scratch but available for machine 
code subroutines 

Complete CHIP-8 Interpreter Listing 

Add. Code Notes 
- - first initialize the 

registers 
0000 F8 0E B1 high order interrupt 

address 
03 F8 46 A1 low order interrupt 

address replace 00E 
with 06 for 1 1/4K Elf 

06 F8 0F BB establish display page, 
replace 0F with 00 for 1 
1/4K Elf 

09 F8 0E B2 establish a high order 
stack address replace 
0E with 06 for 1 1/4K 
Elf 

0C B6 establish page for 
variables, work space 
(same as stack page) 

0D F8 CF A2 establish low order 
stack address 

10 F8 01 B5 high order address for 
first CHIP-8 
instruction, replace 01 
with 05 for 1 1/4K Elf 
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13 F8 FC A5 low order address for 
first CHIP-8 
instruction, replace FC 
with FA for 1 1/4K Elf 

16 F8 00 B4 establish control section 
program counter, 
replace 00 with 04 for a 
1 1/4K Elf 

19 F8 1C A4 establish low order 
address for control 
section program counter 

1C D4 make R(4) the program 
counter, this ends 
initialization of 
registers 

- - begin control section of 
interpreter, on return 
from interpreter 
subroutine location 1D 
is entered 

1D 96 B7 establish high order VY 
pointer 

1F E2 establish x-register 
20 94 BC make R(C).1 the current 

page 
22 45 load first byte of a 

CHIP-8 instruction in 
R(F).1 

23 AF save 1st byte of 
instruction to R(F).0 

24 F6 F6 F6 F6 shift right 4 times to get 
most significant digit 

28 32 44 go to 44 if most 
significant digit is 0, we 
have a machine 
language subroutine 

2A F9 50 else or immediate 
against 50 to make 
pointer to table of 
subroutine locations 

2C AC save result in R(C).0, 
the register used as a 
pointer 

2D 8F bring back 1st byte of 
instruction 

2E F9 F0 or immediate against F0 
to make VX pointer 

30 A6 save in R(6).0, the VX 
pointer 

31 05 load 2nd byte of 
instruction 

32 F6 F6 F6 F6 shift right to get most 
significant digit 

36 F9 F0 or immediate against F0 
to make VY pointer 

38 A7 save in R(7).0, the VY 
pointer 

39 4C B3 interpreter high order 
subroutine address from 
table to R(3).1 

3B 8C FC 0F AC set up pointer to table 
of low order subroutine 
addresses 

3F 0C A3 low order subroutine 
address from table to 
R(3).0, R(3) now points 
to correct interpreter 
subroutine 

41 D3 change to subroutine 
program counter 

42 30 1D subroutines end with 
D4, return here and go 
back to treat another 
interpreter instruction 

- - comes to location 44 for 
machine code 
subroutines 

44 8F reload 1st byte of 
CHIP-8 instruction 

45 B3 save in R(3).1, high 
order machine code 
subroutine address 

46 45 load advance – 2nd byte 
of interpreter 
instruction 

47 30 40 go to location 40 to set 
R(3).0 and call 
subroutine 

- - end of control section, 
except see tables of 
addresses 

49 22 69 12 D4 these 4 bytes are a 
machine code 
subroutine to turn on 
1861 (TV) – obeyed in 
usual way as a machine 
code subroutine 

4D 00 00 00 00 unused 
- - next 15 bytes are high 

order addresses for 
interpreter subroutines, 
notes show most 
significant digit of 
instruction (note add 04 
to each address for 1 
1/4K Elf) 

51 01 01 01 01 1 2 3 4 
55 01 00 01 01 5 6 7 8 
59 01 01 01 01 9 A B C 
5D 00 01 01 D E F 
60 00 unused 
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- - low order addresses – 
same for 1 1/4K Elf 

61 7F 78 86 8E 1 2 3 4 
65 98 FC 00 C2 5 6 7 8 
69 94 F1 B2 DF 9 A B C 
6D 70 9C 05 D E F 
- - Now starts the 

remainder of the 
interpreter subroutines 

- - entry to the display 
subroutine instruction, 
DXYN, review material 
in section 3 to see what 
it does. R(6) is used to 
point to work space, 
R(A) is I (the memory 
pointer), R(7).0 and 
R(D),0 are used to store 
N the number of bytes 
to display, and R(C) is 
used as pointer in to 
display page 

70 06 BE load VX, save in R(E).1 
72 FA 3F and against 3F (only 64 

positions across display 
field) 

74 F6 F6 F6 shift right 3 times (gets 
row address, i.e. 0-7 in 
display page) 

77 22 52 save word address on 
stack 

79 07 load VY 
7A FE FE FE shift left 3 times to 

make space for row 
address 

7D F1 or on row address by 
setting R(C).1 to 
display page address 

7E AC save in R(C).0 
7F 9B BC complete address by 

setting R(C).1 to 
display page address 

81 45 load advance, 2nd half 
of instruction 

82 FA 0F and off number of bytes 
to display 

84 AD A7 save in R(D).0 and 
R(7).0 

86 F8 D0 load starting address of 
work space 

88 A6 R(6) now points to 
work space 

89 F8 00 AF establish R(F).0 as a 
source of 00 

8C 87 load number of bytes to 
display (a reentry point) 

8D 32 F3 to location F3 for 
housekeeping if all 
done or if no bytes to 
display 

8F 27 decrement number of 
bytes to display 

90 4A BD load advance, load 
display byte and save in 
R(D).1 

92 9E reload VX 
93 FA 07 AE and against 07, save in 

R(E).0, this is position 
in word – say R(A) 
pointed to a location 
containing FF (1111 
1111) and least 
significant 3 bits of VX 
were (011) – routine 
from here to A9 would 
make two adjacent 
work locations (0001 
1111) and (1110 0000) 
i.e. it would shift the 
word to be displayed 
over by 3 bits and fill in 
to the left and right with 
0. 

96 8E load word position 
97 32 A2 to A2 if 00, no shift 

needed 
99 9D F6 BD shift 1 bit to DF, 0 to 

MSB of D 
9C 8F 76 AF transfer DF to R(F).0, 

DF to MSB, LSB to DF 
9F 2E 30 96 repeat number of times 

in word address 
A2 9D 56 save 1st word in work 
A4 16 8F 56 save 2nd word in work 
A7 16 point R(6) to next work 

space 
A8 30 89 repeat till all display 

words treated 
AA 00 idles here after 

housekeeping, sees 
locations F3 through 
FB, still here to transfer 
work to display – R(C) 
points to first word to 
change in display field 

AB EC make R(C) the X 
register 

AC F8 D0 load starting address of 
work 

AE A6 R(6) points to work 
AF F8 00 A7 00 to R(7).0 and 

eventually to VF 
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B2 8D load number of bytes to 
display, reenters here 
until done 

B3 32 D8 all done?, to D8 to set 
VF and exit 

B5 06 load byte from work 
B6 F2 and against display 

field 
B7 2D decrement bytes to 

display 
B8 32 BD to BD if result of and is 

00, i.e. no points 
already set 

BA F8 01 A7 if points set make 
R(7).0 and eventually 
VF, 01 

BD 46 reload work to D (load 
advance) 

BE F3 x’or against display 
field 

BF 5C write result to display 
field 

C0 02 reload VX 
C1 FB 07 are we at the end of the 

row? 
C3 32 D1 if we are quit, no wrap 

around 
C5 1C else increment R(C) 
C6 06 load next word from 

work 
C7 F2 32 CD repeat test for already 

set bits 
CA F8 01 A7 01 to R(7).0 if bits set 
CD 06 load from work again 
CE F3 5C x’or against filed and 

write to field 
D0 2C 16 decrement R(C), 

increment R(6) 
D2 8C FC 08 load R(C).0 add 08 
D3 AC load new address to 

R(C).0 
D6 3B B2 if DF is 0 go to B2 to 

do more, else we’ve run 
over bottom and should 
return 

- - comes here when all 
done 

D8 F8 FF A6 load VF address to 
R(6).0 

DB 87 56 load R(7).0 (either 00 
or 01) and store in VF 

DD 12 D4 fix up stack and return 
to control section 

DF 00 unused – done with 
main part of display 
routine se F3 – FB, a 
patch for housekeeping 

- - entry point for 00E0 
instruction (04E0 for 1 
1/4k Elf) a machine 
code subroutine that 
erases the display page 

E0 9B BF load display page 
address to R(F).1 

E2 F8 FF AF load FF to R(F).0 
E5 F8 00 load 00 to D 
E7 5F store via F 
E8 8F 32 DE load R(F).0, return from 

subroutine if D is 00, 
all done 

EB 2F 30 E5 else decrement R(F) 
and go back to blank 
another memory 
location 

- - entry point for 00EE 
instruction (04EE for 1 
1/4k Elf) retrieves 
interpretive code 
address from stack 

EE 42 B5 retrieve high order 
address 

F0 42 A5 then low order address 
R(5) now set 

F2 D4 return to control section 
- - part of display routine, 

resets memory pointer 
F3 8D A7 load number bytes to 

display, save in R(7).0 
F5 87 load R(7).0 to D 
F6 32 AA if 00 done, go to AA to 

wait for DMA 
F8 2A 27 decrement R(A) 

(memory pointer) and 
R(7) 

FA 30 F5 go back to check if 
done 

- - entry for 6XKK 
subroutine 

FC 45 load KK to D 
FD 56 D4 write to VX and return 
FF 00 unused, end of page 00 

(04 for 1 1/4k Elf) 
- - begin page 01 (05 for 1 

1/4k Elf) 
- - entry for 7XKK 

subroutine 
0100 45 load KK to D 
01 E6 make R(6), VX, the X 

register 
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02 F4 add KK to VX 
03 56 write result to VX 
04 D4 return to control section 
- - all F instructions enter 

here and are set to 
correct subroutines by 
changing R(3) 

05 45 load advance – 2nd byte 
of F instruction is 
location to transfer to 
on this page 

06 A3 change R(3) subroutine 
program counter to 
correct address 

- - entry for FX07 
subroutine 

07 98 load timer value to D 
(see interrupt routine) 

08 56 D4 write VX and return 
- - entry for FX0A 

subroutine 
0A 3F 0A 37 0C wait for in on, off 
0E 22 push down stack 
0F 6C read switch byte 
10 FA 0F and against 0F to get 

least significant digit 
(This corresponds to 
original Chip-8, could 
and against FF to read 
complete byte) 

12 12 56 restore stack, write to 
VX 

14 D4 return to control section 
- - entry for FX15 

subroutine 
15 06 load VX to D 
16 B8 D4 save in R(8).1 and 

return 
- - entry for FX18 

subroutine 
18 06 load VX to D 
19 A8 D4 save in R(8).1 and 

return (see interrupt 
routine for FX15 and 
FX18 explanation) 

- - the next 3 bytes are 
used by the FX33 
subroutine 

1B 64 100 (base 10) 
1C 0A 10 (base 10) 
1D 01 1 (base 10) 
- - entry for FX1E 

subroutine 
1E E6 make R(6), VX pointer, 

the X register 

1F 8A load low order memory 
pointer address 

20 F4 AA add VX, restore R(A) 
22 3B 28 to 28 if DF is zero, no 

overflow, exit 
24 9A FC 01 else increment high 

order I address 
27 BA D4 restore it and return 
- - entry for FX29 

subroutine, table of 
display patterns is on 
page with interrupt 
routine, pointer into 
table are at the 
beginning of the page 

29 91 BA load interrupt page 
address to R(A).1 

2B 06 load VX to D 
2C FA 0F and against 0F to get 

least significant digit 
2E AA 0A AA get low order R(A) 

address from table of 
pointers 

31 D4 return 
32 00 unused 
- - entry for FX33 

subroutine (hex to 
decimal conversion) 

33 E6 make R(6), VX pointer, 
the X register 

34 06 BF save VX in R(F).1 
36 93 BE point R(E) to 011B, 

first 
38 F8 1B AE entry of table 
3B 2A decrement memory 

pointer 
3C 1A increment memory 

pointer, later enter here 
3D F8 00 5A write 00 to M(R(A)) 
40 0E load table entry to D 
41 F5 subtract VX 
42 3B 4B if overflow go to 4B 
44 56 else write remainder to 

V6, 
45 0A FC 01 5A add 01 to M(R(A)), 
49 30 40 and repeat 
4B 4E here if overflow – load 

advance table entry 
4C F6 shift right - if table 

entry is 01 DF is set 
4D 3B 3C back to do another digit 

unless DF is set 
4F 9F 56 here if done - restore 

VX 
51 2A 2A restore memory pointer 
53 D4 return to control section 
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54 00 unused 
- - entry for FX55 

subroutine transfer 
variables to memory 

55 22 push down stack 
56 86 52 load contents of R(6).0 

to stack (one of F0-FF) 
58 F8 F0 A7 point R(7) to V0 
5B 07 load V0, on later entry 

V1, etc. 
5C 5A write to M(R(A)) 
5D 87 F3 load R(7).0 and x'or 

against stack byte - 
passed VX pointer - if 
result is 00 we're done 

5F 17 1A increment R(7) and 
memory pointer 

61 3A 5B go to 5B to transfer 
next VX unless done 

63 12 D4 else restore stack 
pointer, return 

- - entry for FX65 
subroutine transfer 
memory to variables 

65 22 push down stack 
66 86 52 transfer contents of 

R(6).0 to stack, on of 
F0-FF 

68 F8 F0 A7 point R(7) to V0 
6B 0A load M(R(A)) to D, 

enters here later 
6C 57 write in V0, V1, V2, 

etc. 
6D 87 F3 load R(7).0 and x'or 

against stack byte - if 
result is 00 we're done 

6F 17 1A increment R(7) and 
memory pointer 

71 3A 6B go to 5B to transfer 
next byte unless done 

73 12 D4 else restore stack 
pointer, return 

- - entry for FX75 
subroutine transfer VX 
to hex display 

75 E6 make VX pointer the X 
register 

76 12 D4 output VX and return 
- - entry for 2MMM 

subroutine, go to 
interpreter subroutine 

78 15 85 store return interpreter 
code 

7A 22 73 address on stack 
7C 95 52  

7E 25 restore R(5) to point to 
2nd half of instruction 

- - entry for 1MMM 
subroutine rest of code 
through location 85 is 
shared 

7F 45 A5 load MM to D and 
transfer to R(5).0 

81 86 FA 0F retrieve M (most 
significant part) from 
R(6).0 

84 B5 D4 set R(5).1 and return 
- - entry for 3XKK 

subroutine - skip if VX 
equals KK 

86 45 load KK to D 
87 E6 F3 make VX pointer X 

register, x'or VX 
against KK 

89 3A 8D return if D does not 
equal zero 

8B 15 15 else skip 
8D D4 return to control section 
- - entry for 4XKK 

subroutine 
8E 45 load KK to D 
8F E6 F3 make VX pointer X 

register, x'or VX 
against KK 

91 3A 8B skip if D does not equal 
zero 

93 D4 else return 
- - entry for 9XY0 

subroutine, skip if VX 
does not equal VY 

94 45 set R(5) to next 
instruction 

95 07 load VY to D 
96 30 8F transfer to 8F to 

complete instruction 
- - entry for 5XY0 

subroutine 
98 45 set R(5) to next 

instruction 
99 07 load VY to D 
9A 30 87 transfer to 87 to 

complete instruction 
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- - entry for E subroutine 
EX9E - skip if VX 
equals keys (LSD), 
EXA1 - skip if VX does 
not equal keys (LSD), 
see Section 4 Hardware 
Differences. Designed 
to be as close as 
possible to original use 
in VIP 

9C 22 push down stack 
9D 6C switch byte to stack, D 
9E 06 F3 load VX, x'or against 

switch byte 
A0 FA 0F and off least significant 

digit of answer 
A2 52 write result to stack 
A3 45 F6 load advance - shift 

right 0 to DF for EX9E 
instruction, I to DF for 
EXA1 instruction 

A5 42 load back stack byte, 
restore stack 

A6 3B AD to AD for EX9E 
instruction, carry on for 
EXA1 instruction 

A8 3F 8B skip if in not depressed 
AA 3A 8B skip if in depressed but 

wrong key 
AC D4 else return 
AD 3F B1 skip if in not depressed 
AF 32 8B skip if in depressed but 

wrong key 
B1 D4 else return 
- - entry for BMMM 

instruction, go to 
0MMM plus V0 

B2 F8 F0 A7 point R(7) to V0 
B5 E7 make R(7) the X 

register 
B6 45 load MM 
B7 F4 add V0 and D 
B8 A5 save it in R(5).0 
B9 86 FA 0F load R(6).0 to retrieve 

most significant part of 
MMM, and off 

BC 3B C0 to C0 if no overflow on 
addition, all done 

BE FC 01 else add 01 to D 
C0 B5 D4 set R(5).1 and return 
- - entry for 8XYN 

instructions, identical to 
those in demonstration 
interpreter 

C2 45 load YN to D 
C3 FA 0F and off N to get 0N 

C5 3A CA go to CA unless N is 
zero 

C7 07 56 D4 if N is 00 load VY, 
write to VX, return 

- - here on other *XYN 
instructions, see 
demonstration 
interpreter for method 
used 

CA AF 22 save 0N in R(F),0, push 
down stack 

CC F8 D3 73 load D3, write to stack 
CF 8F F9 F0 load 0N, or against F0 
D2 52 write one of F1, F2, F3, 

F4, F5, F6, F7, or FE to 
stack 

D3 E6 make VX pointer, X 
register 

D4 07 D2 load VY and go to stack 
D6 56 on return save result as 

VX 
D7 F8 FF A6 point R(6) at VF 
DA F8 00 make D equal 00 
DC 7E 56 shift DF into D and 

write to VF 
DE D4 return 
- - entry for CXKK 

subroutine, random 
number generator 

DF 19 increment R(9) - 
random byte - see 
interrupt routine 

E0 89 AE 93 BE pint R(E) to some byte 
on this page 

E4 99 load R(9).1 - random 
byte from interrupt 

E5 EE make R(E) the X 
register 

E6 F4 56 add the two random 
bytes, save in VX 

E8 76 shift right with carry - 
scramble D 

E9 E6 make VX pointer the X 
register 

EA F4 B9 add, use result to 
change R(9).1 as it isn't 
changed often in 
interrupt routine 

EC 56 save result to VX 
ED 45 F2 load KK and and 

against VX 
EF 56 D4 save result as VX and 

return 
- - entry for AMMM 

subroutine, set I pointer 
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F1 45 AA load MM - transfer to 
R(A).0 

F3 86 FA 0F retrieve M from R(6),o 
(MSD) 

F6 BA complete memory 
pointer 

F7 D4 end of interpreter 
subroutines 

- - remaining 8 locations 
are used for interpretive 
code, starting address of 
interpretive code is 01 
FC for 4k interpreter, 
05FA for 1 1/4 
interpreter 

F8 00 00 unused, this is 4K 
version 

FA 00 00 unused 
FC 00 E0 erase display page 
FE 00 49 turn on TV 
02 00 - start of interpreter code 
- - for 1 1/4k version 
05 F8 00 00 unused 
FA 04 E0 erase display page 
FC 04 49 turn on TV 
FE 17 00 transfer to page 7 for 

interpreter code 

Character Table and Interrupt Routine 

Add. Code Notes 
- - This code could go on 

any page, as written it is 
on page 0E for the 4k 
version and page 06 for 
the 1 1/4k version 

- - first 16 bytes are 
pointers for the 
characters 0-F 

0E 00 30 39 22 2A pointers to 0, 1, 2, 3 
04 3E 20 24 34 pointers to 4, 5, 6, 7 
08 26 28 2E 18 pointers to 8, 9, A, B 
0C 14 1C 10 12 pointers to C, D, E, F 
- - next 51 bytes are the 

display symbols for the 
characters, 5 
bytes/symbol 

10 F0 80 start E display 
12 F0 80 start F display 
14 F0 80 start C display 
16 80 80  
18 F0 50 start B display 
1A 70 50  
1C F0 50 start D display 
1E 50 50  
20 F0 80 start 5 display 
22 F0 10 start 2 display 

24 F0 80 start 6 display 
26 F0 90 start 8 display 
28 F0 90 start 9 display 
2A F0 10 start 3 display 
2C F0 10  
2E F0 90 start A display 
30 F0 90 start 0 display 
32 90 90  
34 F0 10 start 7 display 
36 10 10  
38 10 60 start 1 display (starts at 

39) 
3A 20 20  
3C 20 70  
3E A0 A0 start 4 display 
40 F0 20  
42 20 end of display 

characters 
- - begin interrupt routine, 

entry point is 0E 46 (06 
46 for 1 1/4k Elf) 

43 7A Q (tone) off 
44 42 70 restore D and return 

from interrupt 
46 22 push stack down, entry 

to interrupt 
47 78 22 52 save X, P; push, save D 
4A C4 no op, necessary 3 

cycle instruction 
4B 19 increment R(9), random 

number (see instruction 
CXKK) 

4C F8 00 A0 set low order address of 
DMA pointer 

4F 9B B0 set high order address 
of DMA pointer 

51 E2 E2 make up necessary 29 
machine cycles 

53 80 E2 load R(0).0 to D 
- - DMA 1 
55 E2 20 A0 restore DMA address 
- - DMA 2 
58 E2 20 A0 restore DMA address 
- - DMA 3 
5B E2 20 A0 restore DMA address 
- - DMA 4 
5E 3C 53 continue till done 
60 9B R(8).1 is timer, load it 

(see FX07 and FX15 
instructions) 

61 32 67 if D is zero go to 67, 
timer is timed out, leave 
alone 
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63 AB 2B 8B B8 else subtract 01 from 
timer, method used 
does not disturb the DF 
flag. DF is not changed 
by the interrupt routine 

67 88 load R(8).0 tone 
duration, see FX18 
instruction 

68 32 43 if tome duration is over 
go to 43 

6A 7B continue with or start 
tone 

6B 28 decrement R(8).0, tone 
duration 

6C 30 44 return, leaving tone on 
- - end of interpreter 

Extending the CHIP-8 Instruction Set 

The CHIP-8 interpreter is well organized and 
constructed and as a result it is easy to modify 
and extend. If a specific task, for example the 
control of a robot, is to be programmed the 
interpretive language can be changed to suit the 
application. Let's look at how we might extend 
the current CHIP-8 instructions. There are two 
main types of instructions one might wish to add, 
those which involve pointers to two of the CHIP-
8 variables, (e.g. like 8XYN) and those which 
require a ;pointer to a single CHIP-8 variable 
(e.g. 6XKK). 

The first group of instructions might be 
created by expanding either the 5XY0 instruction 
or the 9XY0 instruction. Say we chose to expand 
the 5XY0 instruction. The entry point for the 
5XY0 instruction would be changed to point to a 
third CHIP-8 page. The least significant hex digit 
of the instruction would be examined and if it 
was 00 the instruction would have its usual 
meaning. However if the last hex digit was 1, 2, 
etc., the new operations would be performed. 

As an example let's expand the 5XY0 
instruction to the following set: 
5XY0 skip if VX=VY; the next interpreter 

instruction is skipped over if VX 
equals VY (original meaning) 

5XY1 skip if VX>VY; the next interpreter 
instruction is skipped over if VX is 
greater than VY 

5XY2 skip if VX<VY; the next interpreter 
instruction is skipped over if VX is 
less than VY 

5XY3 skip if VX≠VY; the next interpreter 
instruction is skipped over if VX 
does not equal VY 

We will place the new subroutines in the 
middle of page 0E between the interrupt routine 

and the bottom of the CHIP-8 stack. The entry 
point of the new interpreter subroutine will be 0E 
70 (06 70 for the 1 1/4k Elf). CHIP-8 must be 
modified so that the 5 instructions transfer 
control to this address in the interpreter. Replace 
the 01 at location 00 55 with 0E (06 in the 
corresponding place for the 1 1/4k Elf) and 
replace the 98 at location 00 65 with 70. 

Additional Skip Instructions 
Expansion of the 5XY0 Instruction 

Add. Code Notes 
0E 70 93 BC set R(C).1 to current 

page 
72 45 load advance 2nd 

CHIP-8 byte, now VY 
73 FA 03 and off 00, 01, 02, or 03 

depending on 
instruction 

75 FC 7D add starting address of 
table of locations 

77 AC point R(C) to proper 
entry in table 

78 0C AC pick up table entry, 
point R(C) to proper 
subroutine address 

7A 07 E6 load VY, make R(6) the 
X register 

7C DC go to one of four 
subroutines 

7D 81 address for 5XY0 
instruction 

7E 8B address for 5XY1 
instruction 

7F 8F address for 5XY2 
instruction 

80 87 address for 5XY3 
instruction 

- - entry for 5XY0 
81 F3 x'or VX against VY 
82 3A 86 return if D does not 

equal 00 
84 15 15 D4 else skip and return 
- - entry for 5XY3 
87 F3 x'or VX against VY 
88 3A 84 skip if D does not equal 

00 
8A D4 else return 
- - entry for 5XY1 
8B F7 subtract VX from VY 
8C 3B 84 skip if DF equals zero 
8E D4 else return 
- - entry for 5XY2 
8F F5 subtract VY from VX 
90 3B 84 skip if DF equals zero 
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92 D4 else return, end of 
5XYN subroutines 

Among the instructions that the interpreter 
lacks are simple multiply and divide instructions 
to go along with its addition and subtraction 
instructions. Let's expand the 9XY0 instruction 
to add these instructions to CHIP-8. Multiply and 
divide instructions are necessarily 16 bit ones, 
the product of two 8 bit numbers may be up to 
16 bit long and of course we need 16 bits to 
represent the quotient and remainder from the 
division of two 8 bit numbers. An additional 
variable will be required to hold the most 
significant byte from a multiplication and the 
remainder form a division. VF is already a 
special variable and will be used to hold the most 
significant [art of the product in a multiplication 
and the remainder in division. As well it would 
be nice to be able to represent the product of a 
multiplication as a decimal number and a 16 bit 
hex to decimal conversion routine will also be 
added. 

The new "9" instructions will be located 
starting at the beginning of page 0D and we shall 
have to change the address of the "9" instructions 
in the interpreter. Memory location 00 59 should 
be changed from 01 to 0D and memory location 
00 69 should be changed from 94 to 00. 

The new instructions are: 

9XY0 skip if VX≠VY; the next interpreter 
instruction is skipped over VX does 
not equal VY (unchanged) 

9XY1 set VF, VX equal to VX times VY 
where VF is the most significant 
part of a 16 bit word 

9XY2 set VX equal to VX divided by VY 
where VF is the remainder 

9XY3 let VX, VY be treated as a 16 bit 
word with VX the most significant 
part and convert to decimal; 5 
decimal digits are stored at M(I), 
M(I+1), M(I+2), M(I+3), and 
M(I+4), I does not change 

Multiply, Divide and 16 Bit Display 
Instructions Expansion of 9XY0 Instruction 

Add. Code Notes 
0D 00 93 BC set R(C).1 to current 

page 
02 45 load 2nd CHIP-8 byte, 

YN 
03 FA 03 and off 00, 01, 02, or 03 
05 FC 18 add starting address of 

table of locations 

07 AC point R(C) to proper 
entry in table 

08 0C AC pick up table entry , 
point R(C) to proper 
subroutine address 

- - before calling 
subroutine get ready for 
multiply and divide 

0A E7 R(7), VY pointer the X 
register 

0B 96 BE point R(E) to VF 
0D F8 FF AE  
10 F8 00 5E set VF to 00 
13 F6 clear DF flag 
14 F8 09 AD initialize counter for 

shifts to 09 
- - now call subroutines 
17 DC go to one of 4 

subroutines 
18 80 address for 9XY0 

instruction 
19 1C address for 9XY1 

instruction, multiply 
1A 2D address for 9XY2 

instruction, divide 
1B 46 address for 9XY3 

instruction, hex to 
decimal conversion 

- - multiply routine entry, 
works by shift and add 
method like pencil and 
paper multiplication 

1C 0E 76 5E shift double length 
1F 06 76 56 bit to the left 
22 2D 8D decrement and load 

counter 
24 32 34 done when counted out 
26 3B 1C back if DF is 00, 

nothing to add 
28 0E F4 5E else add VY to VF,  
2B 30 1C before going back 
- - end of multiply routine, 

begin divide routine - 
first check for division 
by zero 

2D 07 load VY to D 
2E 3A 35 if not equal to zero go 

on 
30 F8 FF else set quotient and 

remainder to FF and 
32 56 5E D4 return 
- - here if divisor greater 

than 0, division method 
similar to multiplication 

35 0E F7 load VF, subtract VY 
37 3B 3A to 3A on overflow 
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39 5E else save result in VF 
3A 06 7E 56 shift one bit left 
3D 2D 8D decrement, load counter 
3F 32 34 return when counted 

out 
41 0E 7E 5E shift one bit left 
44 30 35 return to 35 for next 

subtraction 
- - entry to 9XY3 

subroutine, hex to 
decimal conversion (5 
decimal digits) method 
is similar to that for 
FX33 instruction 

46 06 BF save VX 
48 07 AF save VY 
4A 9C BE point R(E) to 1 less 

than starting address 
4C F8 75 AE of table of powers of 10 
4F 2A decrement memory 

pointer 
50 1A 1E increment memory 

pointer, table pointer 
52 F8 00 5A set memory pointer 

location to 00 
55 E7 VY pointer (least 

significant byte) is the 
X register 

56 4E F5 load table entry, 
subtract from VY 

58 E6 VX pointer (most 
significant byte) is the 
X register 

59 0E 75 load table entry, 
subtract with carry 

5B 2E decrement table pointer 
5C 3B 69 to 69 if overflow done 

with this digit 
5E 56 else update VX 
5F E7 0E F5 57 and update VY 
63 0A FC 01 5A increment memory 

pointer location 
67 30 55 and go back till 

overflow 
- - here on overflow 
69 4E F6 load table entry, check 

for done 
6B 3B 50 if not done to 50 for 

next digit 
- - here when done 
6D 9F 56 restore VX 
6F 8F 57 restore VY 
71 2A 2A 2A 2A restore memory pointer 
75 D4 return 
- - table entries 

76 10 27 10000 (base 10) 
2710 (base 16) 

78 E8 03 1000 (base 10) 
03E8 (base 16) 

7A 64 00 100 (base 10) 
0064 (base 16) 

7C 0A 00 10 (base 10) 
000A (base 16) 

7E 01 00 1 (base 10) 
0001 (base 16) 

- - entry for (XY0 
subroutine (original 
instructions) 

80 07 load VY 
81 E6 make VX pointer the X 

register 
82 F3 x;or VY against VX 
83 3A 86 if D not equal to zero, 

skip 
85 D4 else return 
86 15 15 D4 skip and return 

If one has an ASCII device connected to an 
ELF, perhaps a keyboard, it would be convenient 
to have a CHIP-8 instruction which would create 
symbols for the characters in ASCII code. Such 
an instruction is presented last, the FX94 
instruction. This instruction uses the space left 
unused in the interpreter by the expansion of the 
"5" and "9" instructions and creates symbols for 
the 64 characters in 6 bit ASCII. In operation it 
works exactly like the FX29 instruction except 
that the memory pointer is set to the address of 
one of the 64 ASCII symbols corresponding to 
VX instead of to the address of one of the 16 
symbols 0-F. If the "5" and "9" instructions have 
not been expanded this instruction can, as well, 
replace the FX29 instruction and ways to 
implement either alternative will be given. 

The instruction fits on a single page; each of 
the 64 ASCII symbols are coded by 3 bytes 
which requires 192 memory locations and the 
remainder of the subroutine fits in the 64 
locations remaining. The construction of this 
instruction is quite simple. The first 16 locations 
on the page are patterns which are available to 
construct the symbols. Each ASCII symbol is 
designated by 5 hex digits which correspond to 
the patterns needed to construct the symbol. The 
sixth hex digit in the three words used to code 
each symbol serves as an indicator of the length 
of the symbol. When an FX94 (FX29) 
instruction is carried out this value is transferred 
to V0 where it can be used to get a pleasing 
spacing of the symbols. 
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The symbols are relatively crude, both 
because of the poor resolution of the ELF 
graphics and also because they consist of 
combinations of only 16 patterns. However they 
are easily recognized and make the presentation 
of ASCII data relatively with the aid of a very 
simple interpreter program. 

The method used to transfer control from the 
interpreter to the new subroutine is to change the 
program counter from R(3) to R(C). This change 
has to be done in the interpreter and the address 
of the new subroutine must first be loaded to 
R(C). If the ASCII subroutine is located on page 
0C the proper entry point is 0C D0. To make an 
FX94 instruction add the following code to the 
interpreter on page 01 (4k version): 

Add. Code Notes 
01 94 F8 D0 AC point R(C).0 to D0 
97 F8 0C BC point R(C).1 to page 0C 
9A DC make R(C) the program 

counter 

This code overwrites the locations which were 
used for the "5" and "9" instructions. The same 
code, but located starting at address 01 29, would 
change the FX29 instruction to the ASCII 
instruction. 

Six-Bit ASCII Symbols Subroutine 

Add. Code Notes 
- - subroutine can reside 

on any page, here it is 
on page 0C 

- - the first 16 locations are 
the patterns available to 
make up the symbols 

0C 00 00          (blank) 
01 10    * 
02 20   * 
03 88 *   * 
04 A8 * * * 
05 50  * * 
06 F8 ***** 
07 70  *** 
08 80 * 
09 90 *  * 
0A A0 * * 
0B B0 * ** 
0C C0 ** 
0D D0 ** * 
0E E0 *** 
0F F0 **** 
- - locations 10 through CF 

are codings for the 64 
ASCII symbols, 3 bytes 
to a symbol 

- - A diagram giving the 
order in which the 
patterns are assembled 
from the bytes is: 
   XX XX XX 
   45   23   61 
where the 6th hex digit 
contains the width of 
the character, at most 5 
bits. The first ASCII 
character (hex 00) is @, 
its coding is 46, 3E, 56 
which gives: 
pattern 6 - ***** 
pattern 3 - *   * 
pattern E - *** 
pattern 4 - * * * 
pattern 6 - ***** 
The character is 5 bits 
long 

10 46 3E 56 00 - @ 
13 99 9F 4F 01 - A 
16 5F 57 4F 02 - B 
19 8F 88 4F 03 - C 
1C 5F 55 4F 04 - D 
1F 8F 8F 4F 05 - E 
22 88 8F 4F 06 - F 
25 9F 8B 4F 07 - G 
28 99 9F 49 08 - H 
2B 27 22 47 09 - I 
2E AE 22 47 0A - J 
31 A9 AC 49 0B - K 
34 8F 88 48 0C - L 
37 43 64 53 0D - M 
3A 99 DB 49 0E - N 
3D 9F 99 4F 0F - O 
40 88 9F 4F 10 - P 
43 9F 9B 4F 11 - Q 
46 A9 9F 4F 12 - R 
49 1F 8F 4F 13 - S 
4C 22 22 56 14 - T 
4F 9F 99 49 15 - U 
52 22 55 53 16 - V 
55 55 44 54 17 - W 
58 53 52 53 18 - X 
5B 22 52 53 19 - Y 
5E CF 12 4F 1A - Z 
61 8C 88 3C 1B - [ 
64 10 C2 40 1C - \ 
67 2E 22 3E 1D - ] 
6A 30 25 50 1E - ^ 
6D 06 00 50 1F - _ 
70 00 00 40 20 - space 
73 0C CC 2C 21 - ! 
76 00 50 45 22 - " 
79 65 65 55 23 - # 
7C 46 46 56 24 - $ 
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7F DF BF 4F 25 - % 
82 5F AF 4E 26 - & 
85 00 80 18 27 - ' 
88 21 22 41 28 - ( 
8B 12 11 42 29 - ) 
8E 53 56 53 2A - * 
91 22 26 52 2B - + 
94 2E 00 30 2C - , 
97 00 06 50 2D - - 
9A CC 00 20 2E - . 
9D C0 12 40 2F - / 
A0 9F 99 4F 30 - 0 
A3 22 22 32 31 - 1 
A6 8F 1F 4F 32 - 2 
A9 1F 1F 4F 33 - 3 
AC 22 AF 4A 34 - 4 
AF 1F 8F 4F 35 - 5 
B2 9F 8F 4F 36 - 6 
B5 11 11 4F 37 - 7 
B8 9F 9F 4F 38 - 8 
BB 1F 9F 4F 39 - 9 
BE 80 80 10 3A - : 
C1 2E 20 30 3B - ; 
C4 21 2C 41 3C - < 
C7 E0 E0 30 3D - = 
CA 2C 21 4C 3E - > 
CD 88 1F 4F 3F - ? 
- - end of character table, 

entry point for ASCII 
display subroutine 

- - first point R(a), 
memory pointer to a 
scratch place in random 
access memory - here at 
bottom of stack 

D0 F8 0E BA point R(A).1 to page 0E 
D3 F8 9F AA point R(A).0 to 9F, just 

below stack, R(A).0 
points to 9B when 
returning from 
subroutine 

D6 9C load page number to D 
D7 B3 BD point R(3).1 and R(D).1 

to this page 
D9 F9 F0 A7 point R(7) to V0 
DC Ea make R(A), memory 

pointer, the X register 
DD 06 FA 3F load VX, and off 6 bits 
E0 5A F4 F4 write to M(R(X)), add 

twice to get number 
times 3 

E3 FC 10 add starting address of 
character table 

E5 AD R(D) now points to 
correct location in large 
table 

- - entry point for 
successive table bytes 

E6 0D FA 0F load table entry, and off 
least significant digit 

E9 A3 point R(3) to correct 
entry in table of 
patterns (small table) 

EA 03 73 pick up pattern, write to 
random access memory, 
decrement I 

EC 4D pick up byte again, this 
time advance R(D) 

ED F6 F6 F6 F6 shift right to get most 
significant digit 

F1 A3 point R(3) to correct 
entry 

F2 8A load R(A).0 
F3 FB 9A check, have we done 5 

patterns? 
F5 32 FB if D is 00 we're done, 

go to set V0 and return 
F7 03 73 else pick up pattern, 

write to random access 
memory 

F9 30 E6 and return for next table 
entry 

- - here on return 
FB 83 retrieve length of 

symbol from R(3).0 
FC 57 write to V0 
FD 1A D4 fix up R(A) and return 

The reader would probably like to see what 
these characters look like when displayed. Here 
is an interpretive program which can be used to 
display all of the ASCII symbols. The program 
waits for a switch byte (0-F) and when it is 
entered displays the corresponding ASCII 
symbol in the upper left of the screen followed 
by as many ASCII symbols as the screen has 
room for. If the byte in the interpreter (4K) at 
location 01 11 is changed from 0F to FF 
complete switch bytes (00-FF) can be entered. 

Program to Display ASCII Characters 

Add. Code Notes 
0200 F50A V5 equals keys - waits 

for in button 
02 6600 V6 = 00 
04 6700 V7 = 00, display 

pointers 
06 6B3F VB = 3F, line length 
08 F594 (F529?) set I to V5 

ASCII symbol, V0 = 
symbol length 

0A 7501 V5 = V5 + 01 
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0C D675 display the symbol at 
V6, V7 

0E 8604 V6 = V6 + V0 
10 7601 V6 = V6 + 01, space 

between symbols 
12 8D60 VD = V6 
14 F594 (F529?) set I, V0 for 

next symbol 
16 8DD4 VD = VD + V0, add 

length of next symbol 
to VD 

18 8DB5 VD = VD - VB, check 
will it extend past line 
end? 

1A 3F01 skip if VF is 01, over 
the end of line 

1C 1208 O.K. go back and 
display 

1E 6600 reset to new line 
20 7706 V7 = V7 + 06, set line 

down 
22 471E skip unless V7 is 1E, 

we're off bottom 
24 1224 stop - screen is full 
26 1208 return to do another line 

It is hoped that these examples demonstrate 
the ease with which the CHIP-8 interpreter can 
be extended and modified. One of the limitations 
of CHIP-8, the fact that only memory locations 
0000 through 0FFF are available to it, can be 
overcome by redesigning the interpreter to 
address memory in 4k fields. A field designation 
instruction is used to change from one 4k field to 
another. A relocatable 1k interpreter which 
includes all of the material presented in this 
booklet, as well as a field instruction, is listed in 
the Appendix. The field instruction is a four byte 
one which has the form, FFFF, MMMM. M is 
the new field and MMM is the address of the 
first instruction to be obeyed in the new field. 
For example to transfer to a new field: 

Add. Code Notes 
0FD0 6300 set V3 to 0D 
D2 6400 set V4 to 00 
D4 650a set V5 to 0A 
D6 FFFF field instruction go to  
D8 1004 field 1, 004 
- -  
10 04 F529 point to symbol for A 
06 D345 display A 
- - etc. 

More ambitious programs can be written with 
the 4K memory restraint removed. The field 
designation is stored in R(B).0 and is set on entry 

to the interpreter, if less than 4k of memory is 
available it can be ignored.
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Appendix

The interpreter listed below is relocatable and 
can be placed on any four contiguous pages (e.g. 
0A00 - 0DFF for 4k Elf). It must be entered with 
R(3) as the program counter. Enter at location 
0000 for default values for the first interpreter 
instruction (01FE), the display page (0F), and the 
page for variables and constants (0E). To change 
the default values set R(5) to the address of the 

first interpreter instruction, set R(B).1 to the 
display page, set R(6).1 to the page for variables 
and constants, and enter the interpreter at 
location 000C. The default value for the location 
of the first interpreter instruction (01FE) allows 
space for an erase display instruction (00E0) 
before a program which starts at location 0200. 
The FX29 instruction in this interpreter does not 
alter the value of V0.

0000 F8 01 B5 F8 FE A5 F8 0F 
0008 BB F8 0E B6 95 FA F0 AB 
0010 96 B2 F8 CF A2 E3 70 23 
0018 93 B4 FC 02 B1 F8 D3 A1 
0020 F8 25 A4 69 D4 96 B7 45 
0028 AF F6 F6 F6 F6 32 4D FC 
0030 69 AC 8F F9 F0 A6 05 F6 
0038 F6 F6 F6 F9 F0 A7 94 BC 
0040 EC F4 B3 8C FC 0F AC 0C 
0048 A3 E2 D3 30 25 8F 32 54 
0050 B3 45 30 48 94 FC 02 B3 
0058 05 FB EE 32 66 FB 0E 32 
0060 64 8F 30 50 FC 05 FC 07 
0068 30 48 01 01 02 02 02 02 
0070 01 01 02 01 01 01 00 01 
0078 01 7F 78 1B 1F 27 23 00 
0080 C4 4F F3 AD E1 88 96 05 
0088 06 BE FA 3F F6 F6 F6 22 
0090 52 07 FE FE FE F1 AC 9B 
0098 BC 45 FA 0F AD A7 F8 D0 
00A0 A6 F8 00 AF 87 32 F7 27 
00A8 4A BD 9E FA 07 AE 8E 32 
00B0 BA 9D F6 BD 8F 76 AF 2E 
00B8 30 AE 9D 56 16 8F 56 16 
00C0 30 A1 00 EC F8 D0 A6 F8 
00C8 00 A7 8D 32 F0 06 F2 2D 
00D0 32 D5 F8 01 A7 46 F3 5C 
00D8 02 FB 07 32 E9 1C 06 F2 
00E0 32 E5 F8 01 A7 06 F3 5C 
00E8 2C 16 8C FC 08 AC 3B CA 
00F0 F8 FF A6 87 56 12 D4 8D 
00F8 A7 87 32 C2 2A 27 30 F9 

0100 45 E6 F4 56 D4 45 A3 98 
0108 56 D4 3F 0A 37 0C 22 6C 
0110 FA 0F 12 56 D4 06 B8 D4 
0118 06 A8 D4 64 0A 01 E6 8A 
0120 F4 AA 3B 28 9A FC 01 BA 
0128 D4 F8 B0 30 8E 00 00 00 
0130 15 15 D4 E6 06 BF 93 BE 
0138 F8 1B AE 2A 1A F8 00 5A 
0140 0E F5 3B 4B 56 0A FC 01 
0148 5A 30 40 4E F6 3B 3C 9F 
0150 56 2A 2A D4 00 22 86 52 
0158 F8 F0 A7 07 5A 87 F3 17 
0160 1A 3A 5B 12 D4 22 86 52 
0168 F8 F0 A7 0A 57 87 F3 17 
0170 1A 3A 6B 12 D4 E6 64 D4 
0178 15 95 22 73 85 52 25 45 
0180 A5 86 FA 0F 22 52 8B F1 
0188 B5 12 D4 00 F8 C0 AC 93 
0190 FC 02 BC DC 30 BC 22 6C 
0198 06 F3 FA 0F 52 45 F6 42 
01A0 3B A7 3F 30 3A 30 D4 3F 
01A8 AB 32 30 D4 00 F8 F0 A7 
01B0 E7 45 F4 A5 86 FA 0F 3B 
01B8 BB FC 01 E2 22 52 8B F1 
01C0 B5 12 D4 00 45 FA 0F 3A 
01C8 CC 07 56 D4 AF 22 F8 D3 
01D0 73 8F F9 F0 52 E6 07 D2 
01D8 56 F8 FF A6 F8 00 7E 56 
01E0 D4 19 89 AE 93 BE 99 EE 
01E8 F4 56 76 E6 F4 B9 56 45 
01F0 F2 56 D4 45 AA 86 FA 0F 
01F8 22 52 8B F1 BA 12 D4 45 
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0200 22 73 FA F0 AB 05 52 42 
0208 A5 42 B5 D4 15 9B BF F8 
0210 FF AF F8 00 5F 8F 32 0B 
0218 2F 30 12 45 E6 30 38 45 
0220 E6 30 3E 45 56 D4 00 93 
0228 BC 45 FA 03 FC 34 AC 0C 
0230 AC 07 E6 DC 38 42 46 3E 
0238 F3 3A 3D 15 15 D4 F3 3A 
0240 3B D4 F7 3B 3B D4 F5 3B 
0248 3B D4 07 E6 30 3E 00 93 
0250 BC 45 FA 03 32 4A FC 68 
0258 AC 0C AC E7 96 BE F8 FF 
0260 AE F8 00 5E F6 F8 09 AD 
0268 DC 6C 7D 96 0E 76 5E 06 
0270 76 56 2D 8D 32 84 3B 6C 
0278 0E F4 5E 30 6C 07 3A 85 
0280 F8 FF 56 5E D4 0E F7 3B 
0288 8A 5E 06 7E 56 2D 8D 32 
0290 84 0E 7E 5E 30 85 06 BF 
0298 07 AF 9C BE F8 C5 AE 2A 
02A0 1A 1E F8 00 5A E7 4E F5 
02A8 E6 0E 75 2E 3B B9 56 E7 
02B0 0E F5 57 0A FC 01 5A 30 
02B8 A5 4E F6 3B A0 9F 56 8F 
02C0 57 2A 2A 2A 2A D4 10 27 
02C8 E8 03 64 00 0A 00 01 00 
02D0 7A 42 70 22 78 22 52 C4 
02D8 19 F8 00 A0 9B B0 E2 E2 
02E0 80 E2 E2 20 A0 E2 20 A0 
02E8 E2 20 A0 3C E0 22 76 52 
02F0 98 32 F6 FF 01 B8 42 7E 
02F8 88 32 D0 7B 28 30 D1 00 
0300 00 10 20 88 A8 50 F8 70 
0308 80 90 A0 B0 C0 D0 E0 F0 
0310 46 3E 96 F9 F9 5F 57 FF 
0318 88 F8 5F 55 FF F8 F8 88 
0320 8F FF B9 F8 99 9F 79 22 
0328 72 AE 22 97 CA 9A 8F 88 
0330 38 44 36 99 DB F9 99 F9 
0338 88 9F FF B9 F9 A9 9F FF 

0340 F1 F8 22 22 F6 99 99 22 
0348 55 53 45 44 53 52 23 22 
0350 35 CF 12 CF 88 C8 10 C2 
0358 E0 22 E2 30 25 60 00 00 
0360 00 00 C0 C0 CC 00 50 55 
0368 56 56 46 46 F6 FD FB 5F 
0370 AF 0E 00 88 21 22 21 11 
0378 21 53 56 23 62 22 2E 00 
0380 00 6D 00 CC 00 00 2C 01 
0388 9F 99 2F 22 22 8F 1F FF 
0390 F1 F1 22 AF FA F1 F8 9F 
0398 8F 1F 11 F1 9F 9F FF F1 
03A0 F9 80 80 E0 02 02 21 2C 
03A8 01 0E 0E 2C 21 8C F8 F1 
03B0 06 AF FA 0F F9 30 56 FD 
03B8 39 33 C2 FD 40 56 30 C2 
03C0 06 AF 96 BA F8 9F AA 9C 
03C8 B3 BD EA 06 FA 3F 5A F4 
03D0 F4 F4 F4 76 3B DB FC 10 
03D8 AD 30 E9 FC 10 AD 0D FA 
03E0 0F A3 8A FB 9A 32 F8 03 
03E8 73 4D F6 F6 F6 F6 A3 8A 
03F0 FB 9A 32 F8 03 73 30 DE 
03F8 8F 56 1A D4 00 00 00 00 
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Notes 

 
The FX00 and FX75 instructions cause failures when X is F because R(6) "turns" a page; R(6) should 

be decremented after the use of an output (64) instruction. 
 
When using the relocatable interpreter place all the machine code subroutines in field 0 (0000 to 

0FFF); they are accessible to calls from any of the 16 fields. 
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Additional copies of this booklet can be ordered from: 
Paul C. Moews 
16 B Yale Road 

Storrs, CT 06268 
 

The price, $5.50, includes first class postage and handling. 
Two other booklets with programs for the basic 1/4k Elf are also available: 

1. Music and Games 
2. Graphics 

for $3 each, postpaid. 


