N

ELF Il NEWSLETTER
Netronics Research

MARCH, 1979 VOL.INO.2

PUBLISHED MONTHLY

The Great Micro Power Contest
by Tom Pittman

Most-of you know by now that the February issue of
Kilobaud has an article by me entitled *DOTS". In this article |
explain how the character generator in Netronics Tiny Basic
works. At the end of the article | put ~ut a challenge: *The
1802is the most powerful 8-bit microprocessor,® | said, and it
was worth $50 out of my pocket to prove it. Well, | was kind of
dumb in laying out the rules for the prize.

Basically it was this: DOTs is a callable subroutine to display
characters on the 1861, one character per call. | got it into
some 800-odd bytes of code, with an average execution time
around 1300 or so memory cycles (i.«. something less than 700
instructions). Multiply these together for a processor power
rating of about 1.1 million byte~cycles, or "bykes® as | will call
them here. The rules for winning the $50: beat that by 10%.

well, somebody did. Before | even got my ‘copy of the
February Kilobaud, | received a program from someone in

N “"“—'J . . .
Chicago (he said he was stuck in a blizzard) which was written for

a2 80 and came to 32% less bykes than mine. -4 -paid him-his $50,

but not before | looked at his program veeenrry carefuily. You
see, he changed the data structure of the program, so he did not
prove the Z80 more powerful than the 1802. What he proved is
that mike Amling is a more clever programmer than Tom
Pittman.

How do | know? | reworked my program along the same lines
and beat his program by another 0.2%. OK, obviously the Z80
is as good as the 1802. But not 309 better.

The reason | mention all this is that all of you who are using
the 1802 will be subjected to various forms of bigotry and
prejudice, by people who will try to tell you that the 1802 is less
powerful than Brand X. Don't you believe it. They just made
the mistake of buying into a less powerful CPU and are trying to
cover their tails.

When you get right down to it, the differences are slight.
The average instruction length in the 1802 is about 1.3 bytes.
In the 8050 it is closer to 1.9 bytes. In the 5800 | would guess
1.7 bytes in a typical mix of instructions. That makes the 1802
look a lot better, but you have to realize that because the
instructions are snaller it takes some 309 more of them to do
the sae job, bringing the effective value to about 1.7. Notice
that this is still very competitive.

Now look at execution time. But to be fair, let's not measure
an 1802 with a 1.z clock against a 6502 with a 4viHz clock.
When it was first announced, the 1802 was (and still is) specified
at 6.4iviHz, for a memory cycle time of 1250ns. The 8080 was
specified for a clock speed of 2vHz, giving a memory cycle time
of 1500ns.
speed, though very shortly they were announcing 4iviHz
versions. The original 6800 and 6502 spec called for a TMHz

The original Z80s were specified for the same.

clock and 1000ns memory cycle (these also have speeded up).
The RCA people do not seem to understand what sells, so they
have not bothered to make a speedup version of the 1802.
More's the pity.

But let's consider the original releases of each of these. On
the 1802 no instruction is more than three memory cycles, and
most are exactly two cycles. That's 2.5 microseconds on a
plain-vanilla 1802 running maximum clock. On the 8080 and Z80
there are some instructions that execute in four clock cycles
(2us) but most of them require 5, 7, 8, or often 11 and 17 clock
cycles to execute. The most common instructions (moves and
conditional jumps) generally run four and five microseconds
ecach. In the 6800 the figures are very similar: some
instructions execute in only 2 memory cycles; most take three to
five cycles, and one takes twelve,

The Z80 has some sexy instructions like block move and block
1/0. A two-byteinstruction can move any number of bytes at
the rate of one byte every 21 clock cycles (10.5us in the
plain-vanilla model). The 1802 can do the same thing in a 7-byte
loop in 15us; if | get to choose where the data is coming from or

“going to, the loop is six bytes and only 12.5us per byte moved.

The block 1/0 instructions take the same time in the Z80; in the
1802 | can code a four-byte loop to do the same thing in as little
as 7.5 microseconds per byte of output.

Well, then, why isn't the 1802 more popular? "lIt's the
addressing modes,* say the armchair critics. ¥The 6502 has 13
addressing modes and the 1802 has hardly any.® Six modes is not
exactly "hardly any* (the 8080 has only five), But | can program
any addressing mode | want into the 1802, The ELFBUG
program uses a (programmed) relative addressing mode. | usually
program a base-page addressing mode into most of my programs.
You could write 1802 programs with 23 addressing modes if you
wanted (and if you could think of a use for them); in the 6502 you
are stuck with the 13 they give you.

“But the instruction set is so ridiculous,® the critics
splutter. | say, who is ridiculing whom? The 1802 can do a
subroutine call in 2.5 microseconds; no other micro does it in
less than five. The 1802 can receive an interrupt, process it, and
be back in the main program in the time it might take the 6800 to
notice it got an interrupt. Some people insist that the 6502 "is
more like a minicomputer such as the PDP-11.* lzzatso? Show
me a 6502 program that can do arithmetic on the program
counter. Only the PDP-11 and the 1802 can do that. | claim the
1802 also has many of the important features found only in large
computers like the DEC-10 and the 360.

I have only begun to list the advantages of the 1802, but |
think | had better quit before | get too excited. | just wanted
you to know that you have nothing to be ashamed of. Now if
only we could convince the folks at RCA to give the 1802 the
support it deserves.

The Elusive 256

The basic ELF 1l comes with 256 bytes of RAM. This is
enough 1o write a large variety of programs, but not quite
enough to run bigger things like Tiny Basic. Enter 4K. For a
very reasonable price, you can add 4K RAM in the bus
connector. Tiny will run OK in 4K, but it does not leave you
much room for programs. However, if you leave the 256 bytes
in place, you get 4.3K, which is a lot more program space. The
problem is, it did not work all the time. | fixed mine by changing
two resistors on the memory board: Change R6é from 10K to
1.2K on every memory board; and add R5 (this was left out of
my boards) 3.9K on one memory board only. Can you figure out
‘why this works? One of these days | will have to do an article
on hardware debugging. Promises, promises.

Multiple Tinwr Program
by). H. Hansen

This program was written for use in the photographic
darkroom where multiple times of different lengths are
required.

Features of the program are:

1. As written the program provides for eight different times.
This could be expanded to 18+ if all memory locations are used.
2. The memory locations for desired times are near the
beginning of the program, making it very easy to change them.
3. The times are entered and displayed in decimal form, that is,
directly in minutes and seconds. Therefore no knowledge of or
conversion to hexadecimal is required.

4. Kemaining minutes are displayed and when they are zero,
remaining seconds are displayed. when remaining seconds are 15
seconds or less a warning beep is sounded each second. At End
of Time a tone of different pitch and longer duration is sounded.
5. To start the timer it is only necessary to push the %|*®
button twice. When time is finished, the next time will start
when the * 1% button is again pushed twice. The series of times
can be reset to the beginning by turning the Run switch off and
[+1) 1

6. The maximum time limitations are 99 minutes and 99 seconds.
If you are willing to work with hexadecimal numbers, the
program could be made shorter and the time limits expanded
considerably. [But who would want to? —TP]

| Editor's note: This program requires a speaker to produce
the sounds. An audible sound can be produced by connecting a
cheap speaker across the Q LED. A much louder sound may
require an amplifier.]

Addr, Hex Instruction Comments
00 F800 Lol 00 Initialize high order
02 B4 PHI R4 registers 4,5,6,7.
03 BS PHI RS
04 B6 PHI R6
05 B7 PHI R7
06 F826 LDl MAIN Set memory location
08 A4 PLO R4 for main program
09 F8AF LDI DECH Set memory location for
08 A5 PLO RS Decimal to Hex subroutine
0C F8Co LDI HEXD Set memory location for
OE A6 PLO R6 Hex to Dec subroutine

1

12
13
15
17
19
1B
10
1F
21

23
25
26
27
29
2A
28
2C
20
2E
30
32
33
34
35
36
37
38
3A

3B
3C
3D
3E
3F
40
41
43
45
46
48
49
4B
4C
4E
4F
50
51
53
54
55
57

59
S5A
58
5C
5D

LD! #FF Set memory location for

A7 PLO R7 decimal data storage
D4 SEP R4 Call main program
MMd SS Enter times desired
MV SS Minutes & seconds in Decimal
Mn SS max 99 idin, & 99 Sec.
i SS Eight different times
MV SS may be entered
i SS
vid SS
M4 SS
F810 NEXT:LDI #10 Set tone for
5D STR RD warning "beep"
EO MAIN:SEX RO
3F27 BN4 * Press input button
FO LOX Get minutes
64 ouT 4 Display minutes
E7 SEX R7
D5 SEP RS Convert decimal to hex
B3 PHI R3 Put minutes in Reg 3
372E B4 * Release button
3F30 BN4 * Push Button
EO SEX RO
FO LDX Get seconds
64 ouT 4 Display seconds
£7 SEX R7
D5 SEP RS Convert decimal to hex
A3 PLO R3 Put seconds in Reg 3.0
3738 B4 * release button
78 SEQ Turn Q% LED on

«« One minute loop. Repeat until Min=0
93 MIN: GHI R3 Get minutes
D6 SEP R6 Convert hex to decimal
57 STR R7 Put min in loc.FF
64 out 4 Display minutes
27 DEC R7
93 GHI R3 Get min.
3259 BZ SEC If Min=0
FFO1 il 01
B3 PHI R3
F83C LDl 60
AE PLO RE
F88D LDI (37261).0
AF ML: PLO RF
F892 LDl (37261).1
8F PHI RF
2F DEC RF
9F GHI RF
3A4F BNZ *-2
2E DEC RE
8E GLO RE
3A49 BNZ ML
3038 BR MIN

o« 1 second loop. Repeat until sec.<15
83 SEC: GLO R3 GET SECONDS
Dé SEP R6 Convert hex to dec.
5 STR R7 Put sec. in loc.FF
64 ouT 4 Display seconds
27 DEC R7

OF F8FF

S5E
5F
61
63
65
66
68
69
68
6C
6D
6E
70

72
73
74
75
76
77
78
7A
78
70
7€
80
81
82
84

87
88
8A
8C
8b
8E
90
91

93
95
96
98
99
9A
98
9D
9E
9F
Al
A2
A3
A4
Ab
A7
A8
A9

83
32A1
FFOF
3872
23
F8A7
AF
F892
BF
2F
9F
3A6C
3059

83
D6
57
64
27
1A
F803
BC
F809
AC
F810
A8
78
FFO1
3A82

Y~ ¥ U

88
FFO1
3A88
2C
9C
3A7E
83
3223

F851
AF
F863
BF
2F
9F
3A99
23
83
3A72
57
64
27
F8TF
AD
90
BD
F850

GLO R3

BZ OUT If Sec=0

Swil 15 Subtract 15 from D (sec)

BNF BEEP If O or less

DEC R3

LDt (37287).0

PLO RF

LDI (37287).1

PHl RF

DEC RF

GH! RF

BNZ *-2

BR SEC
<« Part of Second timing loop with warning beep
.« every second for last 15 seconds.
BEEP:GLO R3 Get sec.

SEP R6 convert to sec.

STR R7 Store in memory loc.FF

QUT 4 Display sec.

DEC R7

REQ
TEND:LDI (521).1

PHI RC

LDI (521).0

PLO RC
SL: LDI #10

PLO R8

SEQ

Svl 01

BNZ *-2

GLO R8
Svil 01
BNZ *-2
DEC RC
GHI RC
BNZ SL
GLO R3
BZ NEXT If Sec=0 wait for next time
«+ Part of Second timing loop
++ to make loop = 1 second
LDl (25169).0
PLO RF
LD1 (25169).1
PHI RF
DEC RF
GHI RF
BNZ *-2
DEC R3
GLO R3
BNZ BEEP
OUT: STR R7
ouT 4
DEC R7
LDt SL+1 Location of tone for
PLO RD for signalling end of time
GHI RO
PHI RD
LDI #50 End of time note {tone)

.. REQ e e et e e e et e i e 1w

AB
AC

AE
AF
BO
B2
B5
B6
87
BB
BC
8D
BE
Co
Ci
C3
C4
C5
Ce
C7
C9
CA
CB
cC
CE
Do
D1
D3
D5
-B7
D9
DA
DC
DE
DF
£0
E2
E3
ES
E6
E8

FF

5D
3078

D4

AA
FAFO
F6F6F6
73

60

STR RD Go back thru second loop
BR . TEND to signal end of time

.« Decimal to Hex Subroutine

DECH:

FAFAF4F4

73
60
8A
FAOF
Fa
30AE
XX
9F
D4
BF
F800
AB
AF
9F
FF64
3803
IF
30CC
FC64
FFOA

3BDC

1B
3005
FCOA
BF
88
32C4
9F
FC10
28
30DE
XX
XX
xx

SEP R4 Go back to main program
PLO RA Enter byte

ANI #FO Find most sig. Hex digit
SHR 3 MSHD x2

STXD

IRX

ADD ; ADD ; ADD ; ADD

STXD

IRX

GLO RA Get original byte

ANI #OF Get LSD

ADD D+W(RX)

B8R DECH-1 Exit

«+ Hexadecimal to Decimal Subroutine

HEXD:

GHI RF Get RF.1 into D
SEP R4 Return to main

PHI RF Enter Byte
LDI 00 Initialize
PLO RB

PLO RF

GHI RF Bring back byte

Sl 100 Subtract 100

BNF *+5 If less than O

INC RF

BR *-5 Go back to Subtract 100
ADI 100 Add 100 to get LSD

Swvi 10 Subtract 10

- BNF--#45 - If Jess-than Q--m - —

INC RB

BR *-5 Go back to subtract 10

ADI 10

PHI RF

GLO RB

BZ HEXD-2 Exit

GHI RF

ADI #10 Add hex 10

DEC RB

BR DL Loop until D=0
Temporary storage

Square Roots

The mathematical capabilities of Tiny Basic are really rather
limited: no fractions, no trig functions, not even a square root.

‘Who needs them? Maybe you do. So this is a short program to

calculate the square root of a number.
If you write out the perfect squares in a row like this

01

4 9

16 25 36 49

you can subtract each one from the next square in the series:
1 3 5 7 9 11 13
Notice that the differences are simply the odd numbers in
sequence. Inother words,if | start with zero and successively
add the odd numbers, 1, 3, 5, 7, and so on, | will get ail the
perfect squares.

We can use this fact to compute the square root of a (small)

ey

number, by subtracting successive odd integers from it until it
goes below zero. Hereis a Tiny Basic program to do this:

100 REM COMPUTE SQUARE ROOT

110 INPUT N |

120 IF N<O THEN GOTO 110

130 PRINT YTHE SQUARE ROOT OF #;N;¥# |S ¥;

140 F=1

150 IF N<327 THEN F=10

160 N=N*F*F

190 i==1

200 RBV MAIN LOOP

210 I=1+]

220 N=N-1-1-1

230 IF N>=0 THEN GOTO 210

300 REM PRINT THE RESULT

310 PRINT 1/F;

320 IF F>1 THEN PRINT ".%; -1 /F*F;

330 PRINT

340 GOTO 110

This program should fit into the minimum Tiny Basic
configuration (see Page 2, this issue), if you take out the REM
lines.

Another way to calculate a square root is by successive
approximation, a kind of "cut and try" technique known as

N NETRONICS RESEARCH
A AND DEVELOPMENT LIMITED

333 LITCHFIELD ROAD (RTE. 202)
NEW MILFORD, CONNECTICUT 06776

NEW PRODUCTS
Text Editor
Assembler
Disassembler

Video Display Board

Newton's Method. In this you make a first guess at a root, then
divide it into the original number and average the divisor and
quotient for the second guess. This is repeated until you cannot
get any closer. Newton's Method is best when the numbers you
are working with are large, or if the computer has a good, fast,
hardware divide.

We can modify the program to use Newtor's method:

190 1=1
210 R=|

220 I1=(N/1+1)/2

230 IF 1<>R THEN GOTO 210

Notice that this verson only changes the inner loop. For
some numbers this program never finishes. Can you figure out
why? In case you cannot, 'l give the answer next month.

You may wonder what the purpose of F is. If the number is
small enough, we can get a more precise result by a process known
as "scaling®. That is, muitiplying the number by a scale factor,
then dividing the result by (in this case} the square root of that
scale factor, The scale factor is 100, and if 100 times the
number is still in the Tiny Basic range (i.e. is less than 32768)
then we can get one more decimal place of accuracy by scaling.

i et At . e

BULK RATE
U. S, POSTAGE
PAID
New Milford, Ct.
Permit No, 23

PRINTED MATTER

